homehome Home chatchat Notifications


Scientists reverse leading cause of late-onset Alzheimer's, opening door for vaccine that prevents the disease

This could lead to a game-changing therapy.

Tibi Puiu
December 19, 2018 @ 3:41 pm

share Share

Credit: Pixabay.

A team of researchers at the University of Texas Southwestern Medical Center may have found a way to prevent Alzheimer’s disease from clogging brain tissue. Their novel approach could be turned into a drug or vaccine that would prevent the debilitating disease in 50 to 80% of at-risk adults.

Alzheimer’s is the leading cause of dementia. The neurodegenerative disease affects cognitive and thinking abilities, making day-to-day life incredibly challenging in its most advanced stages.

After a certain age, the human brain starts to shrink considerably but surprisingly, not too many neurons die in the process. In the Alzheimer’s diseased brain, however, many neurons stop functioning, lose connections with other neurons, and eventually die.

In the early stage, the damage is confined to the entorhinal cortex and hippocampus, two areas associated with memory, navigation, and perception of time. This sort of degeneration leads to memory loss and disorientation associated with the condition — though it has to be noted that Alzheimer’s starts damaging brain cells well even before the first symptoms kick in.

Later on, the disease starts to hit the cerebral cortex responsible for language, reasoning, and social behavior, from where it eventually spreads to other brain areas.

Research has shown that individuals with Alzheimer’s disease accumulate beta-amyloid proteins which clump together to form plaques between neurons and disrupt cell function. Another physical characteristic of the Alzheimer’s diseased brain is the buildup of tau proteins. which tangle inside neurons blocking the cells’ transport system.

Currently, there is no available cure for Alzheimer’s disease. Most research efforts are focused on findings ways to halt the progress of the disease and reduce its symptoms. However, molecular biologist Joachim Herz and colleagues at UT Southwestern have embarked on a different route: instead of looking for ways to stop the spread of amyloid and tau accumulation when the process has already set in, the researchers are looking to prevent the buildup from happening in the first place. In other words, they want to prevent the disease rather than treat it.

There are three major forms of Apolipoprotein E (ApoE) proteins that play a vital role in the brain tissue repair by carrying lipids and cholesterol around the brain. However, individuals who carry ApoE4 are up to 10 times more likely to get Alzheimer’s than those with the ApoE2 and ApoE3 forms.

Herz and colleagues claim that ApoE4 causes “traffic jams” inside neuron cells, thereby leading to inefficient recycling of intracellular endosomal transport vesicles. Their research on mice found that lowering the pH of these endosomes (making them more acidic) cleared the traffic jams. Specifically, the ApoE4-induced blockages were reversed by inhibiting the NHE6 protein, which is responsible for making endosomal vesicles less acidic.

“Our approach in this study was to stop the overall degeneration process earlier; that is, before the formation of these aggregates [i.e. amyloid and tau protein],” Dr. Herz said in a statement.

The findings provide a new therapeutic pathway that could prevent Alzheimer’s in 50% to 80% of at-risk adults. A vaccine or drug that selectively blocks NHE6 could be administered before age 40, providing a lifetime of Alzheimer’s protection. Developing such tailor-made molecules is the next step for the UT Southwestern researchers.

“The beauty of NHE inhibitors is that these are small molecules that can be produced inexpensively and thus made widely available, in contrast to the more elaborate antibody-based therapies that are currently being evaluated in clinical trials. A simple pill could someday neutralize the risk of late-onset Alzheimer’s disease just as readily available statins are able to reduce the risk of cardiovascular disease,” Dr. Herz said.

The findings were reported in the journal eLife.

share Share

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.

Pluto's Moons and Everything You Didn't Know You Want to Know About Them

Let's get acquainted with the lesser known but still very interesting moons of Pluto.

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

These robots are taking over repetitive jobs and reducing workload as Japan combats a worker crisis.

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

We can't confirm it yet, but it's as close as it gets.

A small, portable test could revolutionize how we diagnose Alzheimer's

A passive EEG scan could spot memory loss before symptoms begin to show.

Forget the wild-haired savages. Here's what Vikings really looked like

Hollywood has gravely distorted our image.

Is a Plant-Based Diet Really Healthy for Your Dog? This Study Has Surprising Findings

You may need to revisit your dog's diet.

A Single LSD Treatment Could Keep Anxiety At Bay for Months

This was all done in a controlled medical setting.