homehome Home chatchat Notifications


Scientists activate tooth regeneration in mice

Mice are born with a single set of teeth, unlike humans which have two. Now, scientists used genetic techniques to signal the formation of additional teeth in mice.

Tibi Puiu
February 21, 2019 @ 8:36 pm

share Share

Credit: Pixabay.

Humans have two sets of teeth, the second of which is meant to replace our temporary deciduous teeth or “baby teeth.” Other animals, such as reptiles or fish, can regenerate teeth indefinitely during their lifetime. Mice, however, are born with a single set of teeth.

Looking to understand the evolutionary drivers between different tooth replacement strategies, researchers at the King’s College London studied dental development in mice. They identified a molecular signaling pathway in the rodents’ dental lamina, the area that forms the teeth, and using genetic techniques managed to regenerate a new set of teeth.

The researchers, led by Professor Abigail Tucker, first compared gene expression in the dental lamina of the mouse and the minipig, which has two sets of teeth. 

The research team found that Wnt signaling, which is normally required for tooth replacement in other vertebrates, is missing in a rudimentary form of the dental lamina (RSDL) in mice.

Using genetic techniques, the researchers activated this signaling pathway in the mouse RSDL, revitalizing the structure and ultimately leading to the formation of new teeth.

The study shows that RSDL may be a source of replacement teeth in mice and provides an experimental framework for studying the mechanisms behind replacement.

“Why the potential for tooth replacement varies so much across vertebrates is an intriguing question”, explains PhD student Elena Popa. “Our results show that, although the mouse normally does not form a second replacement set of teeth, it still has the potential to do so given the right signals.”

The authors also reported that culturing RSDL in isolation resulted in tooth formation, suggesting that the previous set of teeth also influences the development of the next.

Professor Tucker explains: “This is relevant to human tooth replacement, as structures similar to the RSDL have been identified next to the permanent teeth during development. In normal development of our teeth, therefore, the second set or permanent tooth may inhibit the generation of a third set of teeth.”

The findings appeared in the journal Development

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.