homehome Home chatchat Notifications


This new AI could help cure epilepsy. Here's how

The algorithm could be a game changer in epilepsy treatment.

Jordan Strickler
August 12, 2022 @ 9:05 pm

share Share

Brain abnormalities identified by MELD (highlighted in lime green) on MRI scans of children and adults with epilepsy. (Credit: UCL)

It is estimated that 50 million people worldwide suffer from epilepsy, making it one of the most common neurological diseases in the world. Despite the many medications available to combat the disease, almost one-third of those patients still suffer seizures even when taking pharmaceuticals.

Now, a team of international researchers led by University College London (UCL) has created an artificial intelligence algorithm that can find small abnormalities in the brain, not before seen on general magnetic resonance imaging (MRI) scans, that can cause epileptic seizures. The new AI provides an open door to those who previously might have had none left.

The Multicentre Epilepsy Lesion Detection project (MELD) used MRI scans from more than 1,000 patients at 22 epilepsy centers around the world to create an algorithm that revealed the locations of abnormalities in drug-resistant focal cortical dysplasia (FCD), one of the most common causes of epilepsy.

“This algorithm could help to find more of these hidden lesions in children and adults with epilepsy, and enable more patients with epilepsy to be considered for brain surgery that could cure epilepsy and improve their cognitive development,” said co-senior author, Konrad Wagstyl of UCL Queen Square Institute of Neurology. “Roughly 440 children per year could benefit from epilepsy surgery in England.”

FCDs are parts of the brain that have grown abnormally and often cause epilepsy that doesn’t respond to drugs. It is usually treated with surgery, however, at times, focal cortical dysplasia remains invisible on an MRI or is extremely difficult to detect. Other times, the affected area of the brain is larger than the abnormality revealed by the MRI, which may cause poor results if MRI data is relied solely upon when deciding whether to proceed with surgery.

To develop the algorithm, the team quantified cortical features from the MRI scans, such as how thick or folded the cortex (the outer layer of the brain) and used data from about 300,000 places in the brain. Then, the researchers trained the algorithm on examples of brains that expert radiologists had marked as either healthy or having FCD based on their patterns and features.

The results, published in Brain, showed that the algorithm could find the FCD in 67% of cases in a cohort of 538 participants.

Previously, MRI tests had shown that 178 of the participants did not have the abnormality. This means that radiologists had not been able to find it. However, the MELD algorithm was able to find the FCD in 63% of these cases.

“Our algorithm automatically learns to detect lesions from thousands of MRI scans of patients,” said co-first author, Hannah Spitzer of Helmholtz Munich. “It can reliably detect lesions of different types, shapes and sizes and even many of those lesions that were previously missed by radiologists.”

This is especially important because if doctors can find the problem on the brain scan, it can be fixed with surgery.

FCD is the most common cause of epilepsy in children who have had surgery to control it. In adults, it is the third most common cause.  FCD is the most common cause of epilepsy in people who have a problem in their brain that usually can’t be seen on an MRI scan.

This study on FCD detection uses the largest MRI cohort of FCDs to date, meaning it is able to detect all types of FCD. MELD can be used on any patient over three years old who has an MRI scan and is thought to have an FCD.

 “We hope that this technology will help to identify epilepsy-causing abnormalities that are currently being missed,” said co-senior author, Sophie Adler of UCL Great Ormond Street Institute of Child Health. “Ultimately it could enable more people with epilepsy to have potentially curative brain surgery.”

share Share

Doctors Restored Hearing in Children and Adults With a Single Shot

A one-time injection helped some patients hear for the first time in their lives

Being Left-Handed Might Not Make You More Creative After All

It's less about how you use your hands than how you use your brain.

People Across Cultures Agree This Body Fat Percentage Is the Most Attractive in Men

Across cultures and genders the male body fat level we consider ideal is less extreme than you think.

Hive Mind: The Surprising Mental Health Benefits of Beekeeping

Tucked away in the shaded corner of a community garden in New Haven, Connecticut, a beehive awaits.  Seven teenagers are here to check on their beehive’s health, but before they do, they need to prepare themselves for the moment. Gathered beneath a bountiful oak tree, they pull on their bee suits – pink and white […]

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

Newborns Feel Pain Long Before They Can Understand It

Tiny brains register pain early, but lack the networks to interpret or respond to it

The Fungus Behind the Pharaoh’s Curse Might Help Cure Leukemia

A deadly fungus found in ancient tombs yields a powerful new anti-leukemia compound.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”