homehome Home chatchat Notifications


The next generation of cancer detectors could be breathalyzers

Some diseases just stink -- and cancer is one of them.

Mihai Andrei
January 6, 2021 @ 3:03 pm

share Share

Every time you exhale, you’re not just exhaling air from your lungs — you’re exhaling a trove of information that could be used to assist in the diagnosis of disease. Researchers at the Fraunhofer Project Hub for Microelectronic and Optical Systems for Biomedicine are close to developing systems that could pick up on those cues and look for telltale signs of illness.

It’s not the first time something like this has been discussed, and we already have a breathalyzer diagnosis system: dogs. Dogs can detect a range of diseases, from cancer or COVID-19 to agricultural diseases. The reason is that many diseases have a distinct odor that can be picked up.

“A lot of diseases cause a change in the composition of the volatile organic trace gases in exhaled air that can be used as biomarkers,” explains Dr. Jessy Schönfelder, research associate at Fraunhofer MEOS. “It’s often a combination of several trace gases in a significantly elevated or significantly reduced concentration that is characteristic for a specific disease. This is known as the VOC fingerprint or VOC pattern.”

Dogs, of course, are amazing at picking up scents, but Schönfelder and colleagues are working on a different approach: building equipment that detects diseases, much like dogs do.

They’re currently working on a special spectrometer that could identify VOC patterns associated with diseases, especially cancer. Since every person exhales around 200 VOCs, it’s not an easy task by any means.

The technology is scalable in many different directions — it can be used to detect a wide range of diseases.

“There’s huge potential for sensor systems in breath gas analysis,” Schönfelder explains. “[The] technology is noninvasive, sensitive and selective. And it is quick, inexpensive and also compact and portable, so there’s no reason why it shouldn’t be used in medical practices and hospitals. The finished product will be about the size of a shoebox.”

The key is to build a device that painstakingly identifies biomarkers one by one. To achieve this, Schönfelder and colleagues are building a miniaturized high-field asymmetric ion mobility spectrometry (FAIMS) chip. The microelectromechanical system (MEMS) comprises an ion filter and a detector. The device also features a UV lamp. In the first instance, the VOCs—borne in a carrier gas—are pumped into the spectrometer, where they are ionized by means of UV light. In other words, they are changed into charged molecules.

“These are then fed to the FAIMS chip, which was developed by Fraunhofer IPMS,” says Schönfelder. “An alternating voltage is then applied at the filter electrodes. By adjusting the voltage at the filter, you can control which VOCs get through to the detector. This generates a VOC fingerprint, which enables us to identify the disease we’re looking for.”

Reference measures with cell systems have already been carried out, but more work is required before the technology can be tested in a clinical setting.

In addition to the physical sensors and analyzers, researchers are also working on software for the breathalyzer. Particularly, an AI algorithm that can analyze and distinguish between different biomarker signatures.

“Each measurement generates half a million readings,” Schönfelder explains. “So we want to use machine learning to analyze this huge volume of data.” The algorithm is trained using samples from healthy test subjects and cancer patients. The results of such measurements are available within a few minutes. “And we can well imagine that our ion-mobility spectrometer might one day be used to screen airline passengers so as to determine whether they are infected with the coronavirus,” she adds.

Ultimately, it is hoped that this sort of system could even offer an advance indication of neurodegenerative diseases such as Alzheimer’s. This is not only faster than a blood test, but it’s also less invasive since it merely requires that the patient exhale into a tube.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.