homehome Home chatchat Notifications


Synthetic muscle made from nylon is 100 times stronger than human muscle

Sometimes, I come across stories or various research that make me wonder “why the heck hasn’t anyone else thought of this before?” We should be grateful, nevertheless, that researchers from University of Texas at Dallas have found a way to manufacture artificial muscle that is up to 100 times stronger than the flimsy tissue that […]

Tibi Puiu
February 21, 2014 @ 12:54 pm

share Share

Sometimes, I come across stories or various research that make me wonder “why the heck hasn’t anyone else thought of this before?” We should be grateful, nevertheless, that researchers from University of Texas at Dallas have found a way to manufacture artificial muscle that is up to 100 times stronger than the flimsy tissue that makes up the human biceps. The material is made out of nylon fibers – the stuff fishnets are made of – that are tensed almost to the upper limit and thermal processed to retain a high energy density.

Like very thin springs, the synthetic muscle is cheap, easy to make and durable. Of course it has some drawbacks, however the researchers envision its introduction in the industry extremely fast considering the facts. Applications include artificial muscles for robots, exoskeleton suits, or automatically heat-regulated window shutters and ventilation systems.

Photograph comparing muscles made by coiling (from left to right) 150 μm, 280 μm, 860 μm and 2.45 mm nylon 6 monofilament fibers. Photo: Science

Photograph comparing muscles made by coiling (from left to right) 150 μm, 280 μm, 860 μm and 2.45 mm nylon 6 monofilament fibers. Photo: Science

The process through which the synthetic sinew is coiled is quite trivially simple. Basically, it boils down to making sure you apply the right tension and weight to the thread when twisting it. Actually, according to the scientists involved in the work, similar nylon coils like the ones they produced can be made by regular people at home.

Nylon or polyethylene gets twisted under high tension over and over again until it reaches a certain strain threshold. Once the plastic can’t twist any more, it starts to coil up on itself like a curled telephone cord. The coil is then thermally treated so it gets locked in place; along with energy stored in the coil. When the resulting coil is heated, it begins to untwist, but in the process the whole whole material begins to compress.

“At first it seems confusing, but you can think of it kind of like a Chinese finger-trap,” says Ray Baughman, a materials scientist with the team. “Expanding the volume of the finger-trap, or heating the coil, actually makes the device shorten.”

By braiding and twisting different threads together and coiling them in different ways, you can end up with different kinds of variations in muscle strength, depending on the kind of application you’re looking for. Also, by blending in conductive wire or wrapping the muscle with a light-absorbing coating, the researchers can control the muscles’ movements with electricity and light instead of direct heat.

Photo: University of Texas at Dallas.

Photo: University of Texas at Dallas.

At the moment, the nylon artificial muscle isn’t all that efficient. While work is presently underway to solve inefficiency issues, by itself, even in its current form, this research is extremely impressive and will most likely get used in real-world applications real soon. It also is a great example of what you can achieve with readily available materials and technology just by applying novel tricks and strategies.

You can find out more in the paper published just today in the journal Science.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.