homehome Home chatchat Notifications


These seeds purify water by killing bacteria. Just add them along with sand in water

Since the time of the ancient Egyptians, people have using the grounded seeds of the Moringa oleifera tree to clean water. Scientists found that some of the proteins contained in the seeds interact with the bacteria in the water, killing and clustering them. Eventually, the bacteria lump falls down to the bottom of the watery solution, and makes the water safe to drink. Now, a team at Penn State reports it's uncovered the mechanism that allows the "miracle tree" seeds, as they've been called before, to purify water. In those places of the world where there isn't any access to clean water (850 million people), the moringa might hold true to its name and provide a cheap, sustainable solution to the problem. Just grow your own water filter and decontamination "device".

Tibi Puiu
June 12, 2015 @ 2:20 pm

share Share

Since the time of the ancient Egyptians, people have using the grounded seeds of the Moringa oleifera tree to clean water. Scientists found that some of the proteins contained in the seeds interact with the bacteria in the water, killing and clustering them. Eventually, the bacteria lump falls down to the bottom of the watery solution, and makes the water safe to drink. Now, a team at Penn State reports it’s uncovered the mechanism that allows the “miracle tree” seeds, as they’ve been called before, to purify water. In those places of the world where there isn’t any access to clean water (850 million people), the moringa might hold true to its name and provide a cheap, sustainable solution to the problem. Just grow your own water filter and decontamination “device”.

Moringa seeds. Image: Penn State

Moringa seeds. Image: Penn State

One of proteins found in the tree’s seeds is a cationic protein, a positively-charged protein, which contains a little peptide sequence that acts like a molecular knife. So this little molecular knife goes through the bacterial cell wall and kills it, basically slitting it open. We have data showing that for one type of E. coli bacteria, the moringa proteins not only take the bacteria out, but kill the bacteria too. And because the moringa protein is naturally positively charged, it’s able to wrap up sediment in water, which is mostly negatively charged, allowing the sediment to settle out of water very quickly. This is why you need to add sand to the water, along with the ground seeds,  so the proteins can anchor the sand and dispatch the bacteria.

“We add the crushed moringa seed to water so that the proteins go into the water. Next we add sand, so that the active protein in the solution anchors onto the sand. The rest of the proteins and organic matter — called biochemical oxygen demand, or BOD — is rinsed away. The functionalized sand is now active, and we have data to show that this sand can clean water and kill pathogens. When you’re done, you just let the sand settle out of the water, so that the sand can be used again. That’s the core of the idea,” said Stephanie Velego of Penn State.

In a recent paper published in Langmuir, the same team at Penn State that has been studying the moringa for years has now uncovered the bacterial kill mechanism. Apparently, the protein fuses the membranes of the bacteria together. A membrane is one of the most vital parts of a cell, and once it’s breached it spells big trouble for the bacteria.

The researchers also found that the best time to harvest the seeds is right when the plant matures during the rainy seasons. That’s when its bacterial fighting abilities are the strongest.

Left: water treated with the crush seeds. Right: unaltered. Image: Penn State

Left: water treated with the crush seeds. Right: unaltered. Image: Penn State

So far, the moringa is shaping up as a great tool to clean water effectively and cheaply. It can even be grown in the desert. Moreover, since the plant itself is also high in protein, it can serve as food, and when you grind the seeds you also get oil. The university has made some tests in Haiti so far, but given its wide use since antiquity it may be possible for it to prove effective across many situations. A won’t certainly kill all bacteria. This is definitely the safety mark they need to handle next: identify all those bacteria the seeds can neutralize.

via PopSci

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.