homehome Home chatchat Notifications


Paralyzed rats regain use of hind legs with flexible spinal cord implant. Humans to follow

Swiss scientists demonstrated a flexible ribbon-like implant that attaches itself to a paralyzed rat's spinal cord, allowing the animal to walk again. The prosthetic, described by foremost experts in the field as 'remarkable', works by delivering timed electrical impulses and drugs along the spinal cord. In this particular case, rats aren't that different from humans, and true enough clinical trials are now one step closer. In the future, paralysis might just be another word for "walking funny."

Tibi Puiu
January 13, 2015 @ 10:07 am

share Share

Footage of a paralyzed rat using his hind legs, which normally should have been completely numb. This from experiments performed last year, so this is an old implant - not the newly developed e-Dura. Image: CNET

Footage of a paralyzed rat using his hind legs, which normally should have been completely numb. This from experiments performed last year, so this is an old implant – not the newly developed e-Dura. Image: CNET

Swiss scientists demonstrated a flexible ribbon-like implant that attaches itself to a paralyzed rat’s spinal cord, allowing the animal to walk again. The prosthetic, described by foremost experts in the field as ‘remarkable’, works by delivering timed electrical impulses and drugs along the spinal cord. In this particular case, rats aren’t that different from humans, and true enough clinical trials are now one step closer. In the future, paralysis might just be another word for “walking funny.”

A breakthrough in medicine

The technology was first introduced by researchers at the Ecole polytechnique federale de Lausanne, Switzerland last year, when it was shown how a rat with a severed spinal cord could walk again after a system of electrical impulses and chemical reactions was introduced.  The brain moves the body by sending electrical signals down the spinal cord and into the nervous system. When the spinal cord is severed, the signals can no longer reach that part of the spine, paralyzing that part of the body. The idea is to direct electrical impulses below the cut, where signal from the brain discontinued. This is done via electrodes that take the place of the brain signal, along with neurotransmitting drugs to reanimate the nerve cells beneath the injured tissue. If you find this amazing, you’re not alone. Paralysis might become a thing of the past in just a few decades.

This is how the flexible e-Dura implant looks like. The implant is so effective because it mimics the soft tissue around the spine so that the body does not reject its presence. Image: EPFL

This is how the flexible e-Dura implant looks like. The implant is so effective because it mimics the soft tissue around the spine so that the body does not reject its presence. Image: EPFL

In practical terms, however, a surface implant on a human’s spinal cord is extremely tricky. Because it’s rigid, the constant friction causes local inflammation, damaging the surrounding area. The latest updates features a flexible implant specifically designed to integrate with the patient’s spine, minimizing the risk of rejection and further damage. Called E-Dura, the implant mimics the soft tissue around the spine – known as the dura mater – reducing the risk of inflammation, friction and abrasion.

[RELATED] Paralyzed rats regain control of their bladder

“Our e-Dura implant can remain for a long period of time on the spinal cord or cortex,” said Professor Stéphanie Lacour.

“This opens up new therapeutic possibilities for patients suffering from neurological trauma or disorders, particularly individuals who have become paralyzed following spinal cord injury.”

After implanting e-Dura in rats, researchers found there was no sign of damage or rejection following two months of observation. It goes without saying the the rats could walk once the implant was set.

e-dura2

The implant is made of silicon and covered with gold electric conducting tracks that can be pulled and stretched along with the silicon material. The electrodes, a new composite made of silicon and platinum microbeads, can be pulled in any direction. The two components act together and direct electrical signals to the spinal cord in the same manner as the brain would. Meanwhile, tiny microfluid channel embedded in the implant deliver neurotransmitter drugs.

“Soft flexible nerves connected to unyielding silicon and metal – the combination has spawned many a Hollywood cyborg,” wrote science writer Robert Service in Science.

“The implants Lacour’s team created still have to be wired to the out- side world to operate, but she and her colleagues are designing wireless versions of the technology. Watch out, Hollywood, reality is catching up.”

It’s heartwarming to hear that this isn’t the only effort that seeks to abolish paralysis. There are many projects worldwide hard at work developing the next generation of implants and drugs that will make paralysis a thing of history. For instance, another group at Cambridge University has restored movement in the hind legs of 23 dogs after they transplanted nerve cells from the animals’ noses.

The human trials may start as early as June of this year, at a special facility called the called the Gait Platform, housed in the University Hospital of Lausanne, Switzerland. The e-Dura implant was described in a paper published in Science.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.