homehome Home chatchat Notifications


Scientists make new opioid painkiller, without the nasty side effects

They started from scratch, using computational techniques to explore more than four trillion different chemical interactions.

Mihai Andrei
August 18, 2016 @ 2:26 pm

share Share

Using brute computational power, researchers have developed a new drug that blocks out pain without sharing many of the unwanted side effects painkillers often bring.

Photo by sfxeric, via Flickr.

They started from scratch, using computational techniques to explore more than four trillion different chemical interactions. In the end, the drug seemed to do as good as morphine in terms of killing pain (on mice), while not causing addiction and not impairing breath in any way. More work is needed to confirm that these effects will carry on in humans, but if they do, then it could very well be a game changer.

Morphine itself was a game changer back in the day – and it still is. It allowed us to develop medicine in a way which would have otherwise been impossible, but there’s also a price to pay. Even in small amounts, morphine can be addictive, and especially in large doses it can be life threatening.

Morphine transformed medicine,” said Brian Shoichet, PhD, a professor of pharmaceutical chemistry in UCSF’s School of Pharmacy and co-senior author on the new paper. “There are so many medical procedures we can do now because we know we can control the pain afterwards. But it’s obviously dangerous too. People have been searching for a safer replacement for standard opioids for decades.”

Several research groups have attempted to develop viable alternatives to morphine. The general approach is to take morphine and try to eliminate the parts of it which have the unwanted effects. This time however, the team went for a much more radical approach – they started everything from scratch.

We didn’t want to just optimize chemistry that already existed,” Shoichet said. “We wanted to get new chemistry that would confer completely new biology.”

They did this because the very structure of morphine (your starting block) can limit the path you go on. Basically, they wanted to think outside the morphine box:

“With traditional forms of drug discovery, you’re locked into a little chemical box,” Shoichet said. “But when you start with the structure of the receptor you want to target, you can throw all those constraints away. You’re empowered to imagine all sorts of things that you couldn’t even think about before.”

There is still a lot of work that still needs to be carried out, especially on the non-addictive claims. Basically, they haven’t chemically shown that the drug doesn’t cause addiction, even though they did show that mice don’t actively seek out the drug, which would imply a lack of addiction.

As it so often happens in recent times, the work is a result of an intensive cross-disciplinary collaboration.

“This promising drug candidate was identified through an intensively cross-disciplinary, cross-continental combination of computer-based drug screening, medicinal chemistry, intuition and extensive preclinical testing,” said co-senior author and 2012 Nobel laureate Brian Kobilka, MD, a professor of molecular and cellular physiology at the Stanford University School of Medicine.

“If you took away any one of these collaborators it simply wouldn’t have worked,” Shoichet added.

Journal Reference: Structure-based discovery of opioid analgesics with reduced side effects. Nature, 2016; 1 DOI:10.1038/nature19112

share Share

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.