homehome Home chatchat Notifications


Three ways gold nanotubes are helping beat cancer

British researchers have demonstrated three ways gold nanotubes can be used against cancer: 1) high resolution in-vivo imaging; 2) drug delivery vehicles; 3) agents that destroy cancer itself. Their work shouldn't be viewed as yet "another" hack that seeks to eradicate cancer. We need to be more realistic than this. Instead, the findings have the potential to be a great measure that both diagnoses and treats cancer at the same time, complementing conventional surgery and, hopefully, avoiding the need for chemotherapy.

Tibi Puiu
February 18, 2015 @ 6:55 am

share Share

British researchers have demonstrated three ways gold nanotubes can be used against cancer: 1) high resolution in-vivo imaging; 2) drug delivery vehicles; 3) agents that destroy cancer itself. Their work shouldn’t be viewed as yet “another” hack that seeks to eradicate cancer. We need to be more realistic than this. Instead, the findings have the potential to be a great measure that both diagnoses and treats cancer at the same time, complementing conventional surgery and, hopefully, avoiding the need for chemotherapy.

Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by multispectral optoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes. (credit: Jing Claussen/iThera Medical, Germany)

Pulsed near infrared light (shown in red) is shone onto a tumor (shown in white) that is encased in blood vessels. The tumor is imaged by multispectral optoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes. (credit: Jing Claussen/iThera Medical, Germany)

Gold nanotube schematic showing hollow interior (left) and transmission electron microscope image (right) (credit: Jeremy Freear/Advanced Functional Materials)

Gold nanotube schematic showing hollow interior (left) and transmission electron microscope image (right) (credit: Jeremy Freear/Advanced Functional Materials)

The scientists at the University of Leeds  made the first successful demonstration of the biomedical use of gold nanotubes in a mouse model of human cancer. They injected the gold nanotubes intravenously then shone a pulsed infrared laser beam. By adjusting the brightness of the laser pulse, the researchers were able to control whether the gold nanotubes were in imaging mode or cancer-destruction mode. In addition, beforehand, the researchers claim the nanotubes  can have their lengths adjusted in order to absorb a precise wavelength.

[SEE] How gold is made and how it got to our planet

In image-mode, the gold nanotubes absorbed the the energy from the laser pulse and generated  ultrasound. Using  multispectral optoacoustic tomography (MSOT), researchers then read the ultrasound waves and detected the gold nanotubes.

For cancer destruction, there were two options:

  • Use a stronger laser beam to rapidly raise the temperature in the vicinity of the nanotubes so that the temperature was high enough to destroy cancer cells.
  • Load the central hollow core of the nanotubes with a therapeutic payload.

Although gold is not particularly harmful to the body (unless you pass a certain threshold), the team coated the nanotubes with a  protective sodium polystyrenesulfonate (PSS) coating. Ultimately, the nanotubes are safely excreted from the body, after they meet their purpose.

“High recurrence rates of tumors after surgical removal remain a formidable challenge in cancer therapy. Gold nanotubes have the potential to enhance the efficacy of these conventional treatments by integrating diagnosis and therapy in one single system,” said  lead author Sunjie Ye, who is based in the School of Physics and Astronomy and the Leeds Institute for Biomedical and Clinical Sciences at the University of Leeds.

Findings appeared in Advanced Functional Materials

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.