homehome Home chatchat Notifications


Nanofibers could capture cancer cells and prevent them from spreading

It could be a solution for an aggressive type of cancer.

Mihai Andrei
December 8, 2021 @ 2:24 pm

share Share

Researchers from the University of Fukui, Japan, have used high-density nanofibers that mimic the microenvironment of the brain and are capable of capturing cancerous cells, paving the way for novel therapeutic solutions.

Depiction of the extracellular matrix. Credits: Cambridge University.

Migrating cells

Our body doesn’t really fix cells — instead, it heals injuries by replacing the damaged cells with new ones. To do this, lots of cells have to be moved from one place to another, a process called cell migration. The problem is that sometimes, abnormal cells can also be migrated from place to place, and this is often how cancerous cells spread to different places of the body.

To make matters even worse, preventing these cells from moving around through regular approaches (like radiotherapy or chemotherapy) is dangerous and can have serious adverse effects. This is where the new study comes in.

“Cell migration is an essential bioprocess that occurs during wound healing and tissue regeneration. Abnormal cell migration is observed in various pathologies, including cancer metastasis. In the present study, a platform based on electrospun nanofibers with a consistent alignment and controlled density was designed to inhibit cell migration,” the researchers write in the study.

The authors of the new study figured out that cell migration is directed by the structure and geometry of something called the “extracellular matrix” — a three-dimensional network consisting of extracellular molecules such as collagen, enzymes, glycoproteins, and minerals that provide structural and biochemical support to surrounding cells. Think of it as a ‘skeleton’ or scaffolding that offers support to the surrounding cells.

This extracellular matrix consists of many fibrous structures, and it is through these structures that cells migrate. If one could somehow create a similar structure (but with a custom geometry), they could exert some control over the migration process.

“We fabricated a nanofibrous sheet in which the fiber density changes from end to end gradually using a technique called ‘electrospinning’ and carried out a culture experiment of brain tumor cells,” says Dr. Satoshi Fujita, who headed the study.

Researchers experimented with different types of electrospun nanofibers. They found that the denser the structures were, the more cell migration was hampered. When researchers arranged the fibers in a high-to-low density configuration, they were able to restrict the movement of cells in the high-density zone; meanwhile, the opposite configuration encouraged migration.

Although it’s still early days, researchers are confident that this technique could lay the groundwork for new approaches in dealing with cancer.

“It is available for the design of scaffolding materials, which are the basis of regenerative medicine, in combination with various fiber processing technologies and material surface treatment technologies. This could lead to the development of practical applications of regenerative medicines,” speculates Dr. Fujita, “In addition, it can be used as a processing technology for culture carriers for efficient production of biological drugs including proteins, antibodies, and vaccines.”

The study has been published in the journal Applied Bio Materials.

share Share

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Mysterious "Disease X" identified as aggressive strain of malaria

The mystery of this Disease X seems to have been solved. Now to develop an approach to handling it.

Bird Flu Strikes Again: Severe Case Confirmed in the US. Here's what you need to know

Bird flu continues to loom as a global threat. A severe case in Louisiana is the latest development in a series of concerning H5N1 outbreaks.

A Factory for Cyborg Insects? Researchers Unveil Mass Production of Robo-Roaches

The new system can turn cockroaches into cyborgs in under 70 seconds.

Scientists Discover a Surprising Side Effect of Intermittent Fasting — Slower Hair Regrowth

Fasting benefits metabolism but may hinder hair regeneration, at least in mice.

Origami-Inspired Heart Valve May Revolutionize Treatment for Toddlers

A team of researchers at UC Irvine has developed an origami-inspired heart valve that grows with toddlers.

Depression Risk Surges by 40% During Perimenopause, New Study Reveals

Women in the perimenopause stage are 40% more likely to experience depression compared to those who aren’t undergoing menopausal changes, according to a new study led by researchers at University College London (UCL). This research, published in the Journal of Affective Disorders, draws on data from over 9,000 women across the globe and underscores an […]

AI thought X-rays are connected to eating refried beans or drinking beer

Instead of finding true medical insights, these algorithms sometimes rely on irrelevant factors — leading to misleading results.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.