homehome Home chatchat Notifications


How different stages of sleep work together for creative problem solving

Even the toughest problems cand find a solution in our sleep.

Tibi Puiu
May 15, 2018 @ 6:05 pm

share Share

rukib's cube

Credit; Pixabay.

Scientists suspect that connections between neurons are remodeled during sleep, and studies on animals have shown that animals and humans deprived of sleep do not perform well on memory tasks. There is still a lot we don’t know about the role of sleep and what exactly goes inside the brain during slumber. A new study, however, is helping fill in the gaps, suggesting that the interleave of REM and non-REM sleep might facilitate creative problem-solving.

“Suppose I give you a creativity puzzle where you have all the information you need to solve it, but you can’t, because you’re stuck,” says first author Penny Lewis, a professor at the Cardiff University School of Psychology. “You could think of that as you’ve got all the memories that you need already, but you need to restructure them –make links between memories that you weren’t linking, integrate things that you weren’t integrating.”

Previous studies have shown that the kind of restructuring Lewis mentions happens while we are asleep. Along with colleagues, Lewis drew on findings from past research to create a model of what might be happening during each stage of sleep.

The model proposes that non-REM sleep helps us organize information into useful categories, whereas REM sleep leaps beyond these categories, leading to unexpected connections and results. In other words, REM sleep enables us to enter a highly intuitive mode of thinking, one that could help some people solve complex problems literally in their sleep.

Rapid eye movement (REM) sleep is a unique mammalian sleeping phase during which the eyes move quickly in different directions. There’s much more going on during this phase than just retinal gymnastics, though. The brain is more active than in the non-REM phase, which is evidenced by intense dreaming that may occur. REM sleep is also known to consolidate learning and memories.

Memories stored in a brain area called the hippocampus are replayed during non-REM sleep. If these memories are similar, they are more likely to get stored in another important brain area involved in memory storage called the cortex. Lewis proposes that the hippocampus controls what is replayed during this stage through some yet unidentified mechanism. And because it encourages the brain to replay memories that are similar or thematically linked, the process encourages us to find and use these links to form schemas.

During REM sleep, however, the hippocampus and cortex don’t appear to be in sync anymore. This may mean that the cortex is now free to replay stored memories in any combination, regardless of whether or not they’re similar.  Previous evidence suggests that so-called ponto-geniculo-occipital waves activate brain areas in the cortex that could randomly trigger the reply of memories from different schemas.

“So, what we propose is that, if you’re stuck on some kind of problem, that problem is salient, and we know that salient things are replayed,” Lewis says. “The slightly hypothetical part is that, when something else is randomly activated in the cortex that has an element that’s similar, you’ll form a link.”

These surprising links may be the creative leaps required to solve a problem.

An example of this model in action, the researchers say, is Earnest Rutherford’s discovery of the structure of the atom. The physicist based his design on something seemingly unrelated: the solar system. According to the model proposed by the researchers, Rutherford’s knowledge of atoms and planets in the solar system would have been categorized in different schemas during non-REM sleep. However, during REM sleep, the memories of atoms were replayed alongside randomly activated memories of the solar system, producing a connection that the physicist might have later applied to his work.

“The idea is to lay out this model in a formal way so that it’s there and people can explicitly test it,” Lewis says.

Lewis and colleagues have received a five-year grant to continue their work, which they plan on testing experimentally in order to validate the model.

Scientific reference: Trends in Cognitive Sciences, Lewis et al.: “How memory replay in sleep boosts creative problem solving” https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(18)30070-6.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.