homehome Home chatchat Notifications


Scientists discover 'hunting circuits' that can turn fuzzy rats into fuzzy murderous rats

It's pretty scary that they can do it to be honest.

Alexandru Micu
January 13, 2017 @ 5:39 pm

share Share

Two sets of neurons have been identified in the amygdala that, when activated, can turn mice into highly effective killers, a new study reports. The findings could help determine how hunting behavior evolved, hundred of millions of years ago.

Image credits Alexas_Fotos / Pixabay.

Here’s one the conspiracy theorists will love.

A team from Yale university have managed to hack the brains of mice into highly efficient killing machines. They ramped up the animals’ aggression by activating two sets of neurons in their amygdala, the paper states.

“The animals become very efficient in hunting,” says Ivan de Araujo, associate professor of psychiatry at Yale University and an associate fellow at The John B. Pierce Laboratory in New Haven.

“They pursue the prey [a live cricket] faster and they are more capable of capturing and killing it.”

Tampering with these neurons caused the mice to attack even inanimate objects — sticks, bottle caps, and an insect-like toy. Dr De Araujo says that the animals bit the toy “intensively” and even used “their forepaws in an attempt to kill it.”

Bloodlust, but with manners

The mice saved their aggressiveness only for prey, as De Araujo reports that the furry rodents didn’t attack one another even with both sets of neurons activated. These results offer a glimpse into how the brain changed hundreds of millions of years ago when jaws first developed. It was the first time any brain had an efficient tool with which to kill prey, a change that “must have influenced the way the brain is wired up in a major way,” De Araujo says.

Just like the military has a chain of command to make sure everything is where it’s supposed to be in battle, brains needed to re-wire to allow for specialized hunting circuits. These serve to govern and coordinate the movements of predators’ jaws and neck muscles, turning a clumsy beast into a deadly predator.

“This is a very complex and demanding task,” De Araujo says.

The team used mice since we know these animals are predatory — they hunt and eat whatever they can, really, mostly insects and worms. One species, in particular, is known as the killer mouse for its habit of feeding on live prey, even other mice at times.

By watching brain scans of hunting mice, they discovered one set of neurons that activated when chasing prey and another that would flare up when biting or killing something. Both of these bundles of neurons are located in the amygdala, which is involved in regulating emotion and motivation.

The next step was to use optogenetics to create mice in which these sets of neurons could be activated using a laser.

“When we stimulate [both sets of] neurons […] they assume the body posture and actions usually associated with real hunting

“It is as if there is a prey in front of the animal,” De Araujo says.

The team found evidence of similar “hunting circuits” in other species that relied on hunting to survive — including humans.

Knowing how the brain processes hunting and killing gives us a glimpse of how — and when — these behaviors evolved. It might also help us understand how aggression, in general, is handled by the brain.

The paper “Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala” has been published in the journal Cell.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.