homehome Home chatchat Notifications


Scientists discover 'hunting circuits' that can turn fuzzy rats into fuzzy murderous rats

It's pretty scary that they can do it to be honest.

Alexandru Micu
January 13, 2017 @ 5:39 pm

share Share

Two sets of neurons have been identified in the amygdala that, when activated, can turn mice into highly effective killers, a new study reports. The findings could help determine how hunting behavior evolved, hundred of millions of years ago.

Image credits Alexas_Fotos / Pixabay.

Here’s one the conspiracy theorists will love.

A team from Yale university have managed to hack the brains of mice into highly efficient killing machines. They ramped up the animals’ aggression by activating two sets of neurons in their amygdala, the paper states.

“The animals become very efficient in hunting,” says Ivan de Araujo, associate professor of psychiatry at Yale University and an associate fellow at The John B. Pierce Laboratory in New Haven.

“They pursue the prey [a live cricket] faster and they are more capable of capturing and killing it.”

Tampering with these neurons caused the mice to attack even inanimate objects — sticks, bottle caps, and an insect-like toy. Dr De Araujo says that the animals bit the toy “intensively” and even used “their forepaws in an attempt to kill it.”

Bloodlust, but with manners

The mice saved their aggressiveness only for prey, as De Araujo reports that the furry rodents didn’t attack one another even with both sets of neurons activated. These results offer a glimpse into how the brain changed hundreds of millions of years ago when jaws first developed. It was the first time any brain had an efficient tool with which to kill prey, a change that “must have influenced the way the brain is wired up in a major way,” De Araujo says.

Just like the military has a chain of command to make sure everything is where it’s supposed to be in battle, brains needed to re-wire to allow for specialized hunting circuits. These serve to govern and coordinate the movements of predators’ jaws and neck muscles, turning a clumsy beast into a deadly predator.

“This is a very complex and demanding task,” De Araujo says.

The team used mice since we know these animals are predatory — they hunt and eat whatever they can, really, mostly insects and worms. One species, in particular, is known as the killer mouse for its habit of feeding on live prey, even other mice at times.

By watching brain scans of hunting mice, they discovered one set of neurons that activated when chasing prey and another that would flare up when biting or killing something. Both of these bundles of neurons are located in the amygdala, which is involved in regulating emotion and motivation.

The next step was to use optogenetics to create mice in which these sets of neurons could be activated using a laser.

“When we stimulate [both sets of] neurons […] they assume the body posture and actions usually associated with real hunting

“It is as if there is a prey in front of the animal,” De Araujo says.

The team found evidence of similar “hunting circuits” in other species that relied on hunting to survive — including humans.

Knowing how the brain processes hunting and killing gives us a glimpse of how — and when — these behaviors evolved. It might also help us understand how aggression, in general, is handled by the brain.

The paper “Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala” has been published in the journal Cell.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.