homehome Home chatchat Notifications


Scientists transplant lab-grown lungs into pigs -- they worked fine

It's a landmark achievement in regenerative medicine.

Tibi Puiu
August 1, 2018 @ 9:05 pm

share Share

Credit: University of Texas Medical Branch at Galveston.

Credit: University of Texas Medical Branch at Galveston.

In a landmark study of regenerative medicine, researchers at the University of Texas Medical Branch (UTMB) have transplanted bioengineered lungs into adult pigs, with no visible complications. This puts us one step closer to providing human patients in dire need of a transplant with the organs they need to survive.

According to the U.S. Department of Health & Human Services, 20 people die each day waiting for a transplant. Lung transplants are particularly problematic, with the number of people requiring one increasing worldwide, while the number of available transplantable organs has decreased. Lungs are harvested from only 15 percent of all cadaveric donors, whereas kidneys and livers are harvested from 88 percent and hearts from 30 percent of deceased donors

The first human lung transplant procedure was performed in 1963, and the recipient survived 18 days, ultimately succumbing to renal failure and malnutrition. Over time, the number of lung transplant procedures has increased, and the operation is now an accepted treatment for end-stage lung disease. In 2015, there were 4,122 adult lung transplants reported — and that’s not nearly enough. But what if it was possible to grow new, personalized organs for each patient in need of a transplant? Certainly, thousands of lives would be saved each year — and, today, we’re nearing such a goal.

“Our ultimate goal is to eventually provide new options for the many people awaiting a transplant,” said Nichols, professor of internal medicine and associate director of the Galveston National Laboratory at UTMB.

For years, Joan Nichols and Joaquin Cortiella from The University of Texas Medical Branch at Galveston have been working on bioengineering lungs. In 2014, they were the first to grow lung cells in a lab, and their method has been refined ever since to the point that the team is now able to bioengineer transplantable lungs.

The challenges were numerous, of course. For one, in terms of different cell types, the lung is probably the most complex of all organs. For instance, the cells near the entrance are very different from those deep in the lung,

The procedure first starts with a support scaffold, a protein structure of collagen and elastin onto which the new lung will grow. The scaffold is placed in a tank filled with a solution made of nutrients and the pig’s own lung cells, following a carefully designed protocol.

For 30 days, the bioengineered lungs grew in a bioreactor before being transplanted into adult pigs. The medical condition of the animals was assessed at ten hours, two weeks, one month, and two months following the operation, which allowed the team to construct a timeline of the lung tissue’s development. For instance, in just two weeks, the transplanted lungs had established a stable network of blood vessels, which it needs in order to survive.

All of the pigs that received the bioengineered lung remained healthy.

“We saw no signs of pulmonary edema, which is usually a sign of the vasculature not being mature enough,” the researchers wrote. “The bioengineered lungs continued to develop post-transplant without any infusions of growth factors, the body provided all of the building blocks that the new lungs needed.”

This study was only meant to evaluate how well a bioengineered lung could adapt to an adult host organism, with positive results so far. However, the team did not measure how much oxygenation the lungs had provided, which will be researched in the future. And, if all goes well, Nichols and Cortiella hope to grow and transplant bioengineered lungs into people within 5 to 10 years. Besides transplants, bioengineered lungs are a great testing medium for experimental drugs, another line of work that can save countless lives.

“It has taken a lot of heart and 15 years of research to get us this far, our team has done something incredible with a ridiculously small budget and an amazingly dedicated group of people,” they wrote.

The findings appeared in the journal Science Translational Medicine.

share Share

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

In principle, the method could be deployed tomorrow, researchers say.

Scientists Create a ‘Smart Sponge’ That Knows When to Heal and When to Fight Inflammation

This hydrogel could help millions of people lead a better life.

The Race to the Bottom: Japan Is Set to Start Testing Deep-Sea Mining

There's a big hidden cost to this practice.

Japan Just Smashed the Internet Speed World Record and It's Much Faster Than You Think

Researchers transmitted 127,500 GB every second — over the distance from Chicago to Dallas.

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

Knots are a test of physical intuition and most of us are failing hard.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

For the First Time Ever We Can See Planets Starting to Form Around a Star

JWST and ALMA peered through a natural opening in the star’s surrounding cloud to catch the action up close.

Low testosterone isn't killing your libido. Sugar is

Small increases in blood sugar can affect sperm and sex, even without diabetes

There might be an anti-aging secret hiding in magic mushrooms

Psilocybin extends cell life, and preserves aging DNA structures.

Not Just Hunters: Wooden Tools Unearth the Sophisticated, Plant-Eating World of Early Humans

What if the Stone Age wasn't really about stone?