homehome Home chatchat Notifications


Why do these lab-grown mini-brains emit brain waves?

It's a bit unusual, to say the least -- but could be quite useful.

Fermin Koop
August 30, 2019 @ 11:01 pm

share Share

In what could be a significant finding to understand the development of the human brain, a group of scientists has created miniature brains from stem cells that developed a functional neural network.

A group of stem cells. Credit: Wikipedia Commons

These lab-grown brains are the first observed to produce brain waves that resemble those of preterm babies, despite being a million times smaller than human brains, according to the study, published in the journal Cell Stem Cell.

“The level of neural activity we are seeing is unprecedented in vitro,” says Alysson Muotri, a biologist at the University of California, San Diego. “We are one step closer to have a model that can actually generate these early stages of a sophisticated neural network.”

The pea-sized brains, called organoids, are derived from human pluripotent stem cells. By putting them in a culture that mimics the environment of brain development, the stem cells differentiate into different types of brain cells and self-organize into a 3D structure resembling the developing human brain.

The researchers successfully grew organoids with cellular structures similar to those of human brains. However, none of the previous models developed human-like functional neural networks. Networks appear when neurons are mature and become interconnected, and they are essential for most brain activities.

“You can use brain organoids for several things, including understanding normal human neurodevelopment, disease modeling, brain evolution, drug screening, and even to inform artificial intelligence,” Muotri said.

The team designed a better procedure to grow stem cells, including optimizing the culture medium formula. These adjustments allowed their organoids to become more mature than previous models. They grew hundreds of organoids for 10 months and used multi-electrode arrays to monitor their neural activities.

In order to compare the brain wave patterns of organoids with those of human brains early in development, the team trained a machine-learning algorithm with brain waves recorded from 39 premature babies between six and nine-and-a-half months old.

The algorithm was able to predict how many weeks the organoids have developed in culture, which suggests these organoids and the human brain share a similar growth trajectory. However, it’s not likely these organoids have mental activities, such as consciousness.

“It might be that in the future, we will get something that is really close to the signals in the human brains that control behaviors, thoughts, or memory,” Muotri said. “But I don’t think we have any evidence right now to say we have any of those.”

The team now aims to further improve the organoids and use them to understand diseases associated with neural network malfunctionings, such as autism, epilepsy, and schizophrenia.

“As a scientist, I want to get closer and closer to the human brain,” Muotri said. “I want to do that because I see the good in it. I can help people with neurological conditions by giving them better treatments and better quality of life. But it’s up to us to decide where the limit is.”

share Share

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

Mysterious "Disease X" identified as aggressive strain of malaria

The mystery of this Disease X seems to have been solved. Now to develop an approach to handling it.

Bird Flu Strikes Again: Severe Case Confirmed in the US. Here's what you need to know

Bird flu continues to loom as a global threat. A severe case in Louisiana is the latest development in a series of concerning H5N1 outbreaks.

Scientists Discover a Surprising Side Effect of Intermittent Fasting — Slower Hair Regrowth

Fasting benefits metabolism but may hinder hair regeneration, at least in mice.

Origami-Inspired Heart Valve May Revolutionize Treatment for Toddlers

A team of researchers at UC Irvine has developed an origami-inspired heart valve that grows with toddlers.

Depression Risk Surges by 40% During Perimenopause, New Study Reveals

Women in the perimenopause stage are 40% more likely to experience depression compared to those who aren’t undergoing menopausal changes, according to a new study led by researchers at University College London (UCL). This research, published in the Journal of Affective Disorders, draws on data from over 9,000 women across the globe and underscores an […]

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

Reading Actually Reshapes Your Brain — Here’s How It Changes Your Mind

Reading can change the brain.

If You Need Only 4 Hours of Sleep, You Might Have This Rare Genetic Mutation

Short sleepers cruise by on four to six hours a night and don’t seem to suffer ill effects. Turns out they’re genetically built to require less sleep than the rest of us.

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

Knots are a test of physical intuition and most of us are failing hard.