homehome Home chatchat Notifications


Why do these lab-grown mini-brains emit brain waves?

It's a bit unusual, to say the least -- but could be quite useful.

Fermin Koop
August 30, 2019 @ 11:01 pm

share Share

In what could be a significant finding to understand the development of the human brain, a group of scientists has created miniature brains from stem cells that developed a functional neural network.

A group of stem cells. Credit: Wikipedia Commons

These lab-grown brains are the first observed to produce brain waves that resemble those of preterm babies, despite being a million times smaller than human brains, according to the study, published in the journal Cell Stem Cell.

“The level of neural activity we are seeing is unprecedented in vitro,” says Alysson Muotri, a biologist at the University of California, San Diego. “We are one step closer to have a model that can actually generate these early stages of a sophisticated neural network.”

The pea-sized brains, called organoids, are derived from human pluripotent stem cells. By putting them in a culture that mimics the environment of brain development, the stem cells differentiate into different types of brain cells and self-organize into a 3D structure resembling the developing human brain.

The researchers successfully grew organoids with cellular structures similar to those of human brains. However, none of the previous models developed human-like functional neural networks. Networks appear when neurons are mature and become interconnected, and they are essential for most brain activities.

“You can use brain organoids for several things, including understanding normal human neurodevelopment, disease modeling, brain evolution, drug screening, and even to inform artificial intelligence,” Muotri said.

The team designed a better procedure to grow stem cells, including optimizing the culture medium formula. These adjustments allowed their organoids to become more mature than previous models. They grew hundreds of organoids for 10 months and used multi-electrode arrays to monitor their neural activities.

In order to compare the brain wave patterns of organoids with those of human brains early in development, the team trained a machine-learning algorithm with brain waves recorded from 39 premature babies between six and nine-and-a-half months old.

The algorithm was able to predict how many weeks the organoids have developed in culture, which suggests these organoids and the human brain share a similar growth trajectory. However, it’s not likely these organoids have mental activities, such as consciousness.

“It might be that in the future, we will get something that is really close to the signals in the human brains that control behaviors, thoughts, or memory,” Muotri said. “But I don’t think we have any evidence right now to say we have any of those.”

The team now aims to further improve the organoids and use them to understand diseases associated with neural network malfunctionings, such as autism, epilepsy, and schizophrenia.

“As a scientist, I want to get closer and closer to the human brain,” Muotri said. “I want to do that because I see the good in it. I can help people with neurological conditions by giving them better treatments and better quality of life. But it’s up to us to decide where the limit is.”

share Share

The Fungus Behind the Pharaoh’s Curse Might Help Cure Leukemia

A deadly fungus found in ancient tombs yields a powerful new anti-leukemia compound.

Doctors Discover 48th Known Blood Group and Only One Person on Earth Has It

A genetic mystery leads to the discovery of a new blood group: “Gwada negative.”

Ozempic Users Are Seeing a Surprising Drop in Alcohol and Drug Cravings

Diabetes drugs show surprising promise in reducing alcohol and opioid use

Why a 20-Minute Nap Could Be Key to Unlocking 'Eureka!' Moments Like Salvador Dalí

A 20-minute nap can boost your chances of a creative breakthrough, according to new research.

Swarms of tiny robots could go up your nose, melt the mucus and clean your sinuses

The "search-and-destroy” microrobot system can chemically shred the resident bacterial biofilm.

Herpes Virus Hijacks Human DNA Within Just an Hour of Infection

Billions carry herpes simplex virus 1. New research reveals it hijacks human genes with eerie precision.

Programs delivering fluoride varnish in schools significantly reduce cavities in children

A simple swipe of fluoride varnish in schools is emerging as a powerful, cost-effective tool to fight childhood cavities and reduce health disparities.

Your Brain on Stress Is Worse Than You Think, Especially If You’re Depressed

Acute stress disrupts key mental skills tied to emotion regulation, a new study finds.

Scientists uncover anti-aging "glue" that naturally repairs damaged DNA

Researchers have newly found a very important function for a well-known enzyme.

Why Bats Don’t Get Cancer—And What That Could Mean for Us

Bats can live up to 40 years without developing cancer. Scientists now know why.