homehome Home chatchat Notifications


Irish dirt might cure the world of (most) multi-drug-resistant bacteria

Dirt me uuuuupppp.

Alexandru Micu
December 28, 2018 @ 3:11 pm

share Share

Irish soil might win us the fight against drug-resistant superbugs. Literally!

New bacteria strain.

Growth of the newly discovered Streptomyces sp. myrophorea. Although superficially resembling fungi, Streptomyces are true bacteria and are the source of two-thirds of the various frontline antibiotics used in medicine.
Image credits G Quinn / Swansea University

An international team of researchers based at the Swansea University Medical School, UK, reports finding a new strain of bacteria that can murder pathogens that our antibiotics increasingly cannot. The bacteria has been found in soil samples recovered from an area of Fermanagh, Northern Ireland.

Bad bugs get grounded

“This new strain of bacteria is effective against 4 of the top 6 pathogens that are resistant to antibiotics, including MRSA. Our discovery is an important step forward in the fight against antibiotic resistance,” says Professor Paul Dyson of Swansea University Medical School, paper co-author.

The finding is far from inconsequential. The World Health Organisation (WHO) describes rising antibiotic resistance as “one of the biggest threats to global health, food security, and development today”. Further research also estimated that antibiotic-resistant ‘superbugs’ could lead up to 1.3 million deaths in Europe alone by 2050.

The team named their discovery Streptomyces sp. myrophorea. It was discovered in the Boho Highlands, County Fermanagh, Northern Ireland, hiding in the soil. The researchers investigated the soils there as Dr. Gerry Quinn, a previous resident of the area, became curious to investigate local healing traditions.

Those traditions called for a small amount of soil to be wrapped up in cotton cloth and applied to cure ailments varying from toothaches to throat or neck infections. The team notes that the area has been inhabited for at least 4,000 years — first by Neolithic tribes and later druidic tribes — who may have started this tradition.

Lab tests later revealed the presence of the strain in local soils, and clued the team in on their impressive antibacterial properties. This bacteria inhibited the growth of four of the top six multi-resistant pathogens (those listed by the WHO as being responsible for healthcare-associated infections): Vancomycin-resistant Enterococcus faecium (VRE), methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumonia, and Carbenepenem-resistant Acinetobacter baumanii. It was also successful in inhibiting both gram positive and gram negative bacteria, which differ in the structure of their cell wall. Gram-negative bacteria are, generally speaking, more resistant to antibiotics.

It is not yet clear exactly how the bacteria do this, but the team is hard at work finding out.

New bacteria strain.

Zone of inhibition (light brown) produced by Streptomyces sp myrophorea (brown spot) on a lawn of MRSA.
Image credits G Quinn / Swansea University.

The active compounds secreted by Streptomyces sp.myrophorea could help create a new class of treatment against multi-drug resistant bacteria, the study reports. These pathogens are one of the most pressing threats to public health currently, as doctors are often left powerless to treat them. They’re especially dangerous in hospitals, where the large density of patients (often with weakened or compromised immune systems) means easy pickings for such pathogens.

“Our results show that folklore and traditional medicines are worth investigating in the search for new antibiotics,” Professor Dyson says. “Scientists, historians, and archaeologists can all have something to contribute to this task. It seems that part of the answer to this very modern problem might lie in the wisdom of the past.”

“We will now concentrate on the purification and identification of these antibiotics. We have also discovered additional antibacterial organisms from the same soil cure which may cover a broader spectrum of multi-resistant pathogens.”

The paper “A Novel Alkaliphilic Streptomyces Inhibits ESKAPE Pathogens” has been published in the journal Frontiers in Microbiology.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.