homehome Home chatchat Notifications


Scientists grow functioning human muscles from skin cells

The new method doesn't rely on donor muscle tissue unlike previous methods.

Tibi Puiu
January 9, 2018 @ 6:28 pm

share Share

muscle

Credit: Pixabay.

In a novel research project, bioengineers at Duke University demonstrated how to grow functioning human muscles from induced pluripotent stem cells. It’s the first time scientists have shown that it’s possible to grow human muscles essentially starting from scratch, all by coaxing skin cells to generate stem cells, which ultimately turned into muscle tissue.

Previously, the same team grew functioning human muscle — the kind that contracts in response to a stimulus such as an electrical signal — in culture, starting with pea-sized globs of muscle, sourced from human volunteers.

While the previous attempts grew new muscle from native muscle, the present work is far more sophisticated since the resulting tissue doesn’t depend on donated muscle. What’s more, the ability to generate muscles starting from non-muscle tissue helps scientists grow far more of these cells. Bearing this in mind, the new technique will prove far more useful as far as genome editing and cellular therapies go. It also makes it possible to tailor custom treatments for rare muscle disorders such as muscular dystrophies or test substances for new drug discovery.

Skin to muscle

Researchers have grown the first functioning human muscle tissue from skin cells reprogrammed into stem cells. Credit: Duke University.

Researchers have grown the first functioning human muscle tissue from skin cells reprogrammed into stem cells. Credit: Duke University.

It all starts from human induced pluripotent stem cells (iPSCs), which are adult non-muscle tissues, such as skin or blood, that have been reprogrammed to revert to a primordial state. Just like any stem cells, iPSCs can then be programmed to differentiate into any kind of tissue. In our case, scientists flood the iPSCs with a signaling molecule called Pax7 which triggers muscle formation out of the cells.

“Starting with pluripotent stem cells that are not muscle cells, but can become all existing cells in our body, allows us to grow an unlimited number of myogenic progenitor cells,” explained Nenad Bursac, professor of biomedical engineering at Duke University. “These progenitor cells resemble adult muscle stem cells called ‘satellite cells’ that can theoretically grow an entire muscle starting from a single cell.”

It sounds easy enough when reading this but the truth is it took Bursac and colleagues years of trial and error before they got it just right. One important breakthrough that enabled cell proliferation into functioning skeletal muscle was the introduction of a unique cell culture conditions and 3-D matrix, rather than having to rely on the 2-D culture approaches that are typically used. This way, cells can grow and develop much faster and longer.

Once the cells reached a critical threshold, the scientists stopped the flow of Pax7 and started giving the cells the support and nourishment they needed to fully mature.

After two to four weeks of 3-D culture, the muscle cells aggregated into muscle fibers that can contract and react to electrical pulses and biochemical signals just like natural muscles would in response to neuronal inputs.

The lab-grown muscle fibers were put to the test when they were implanted into adult mice. Small ‘windows’ grafted on the backs of the mice allowed the researchers to observe how the muscles they’ve grown behaved inside the rodents. The muscles survived and functioned for at least three weeks, during which it progressively integrated with native tissue through vascularization.

The resulting muscle, unfortunately, is not nearly as strong as native muscle tissue nor that grown from muscle biopsies for that matter. It makes up for it, however, in versatility and the ability to grow many more cels from a smaller starting batch than other methods, such as the biopsy one. What’s more, the team’s new muscle seems capable of supplying a special reservoir of cells that muscles can use to regenerate themselves following injury or exercise — an important hallmark of natural muscle. Biopsied muscle tissue, in contrast, produces a far less richer reservoir.

“The prospect of studying rare diseases is especially exciting for us,” said Bursac. “When a child’s muscles are already withering away from something like Duchenne muscular dystrophy, it would not be ethical to take muscle samples from them and do further damage. But with this technique, we can just take a small sample of non-muscle tissue, like skin or blood, revert the obtained cells to a pluripotent state, and eventually grow an endless amount of functioning muscle fibers to test.”

Findings appeared in the journal Nature Communications

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.