homehome Home chatchat Notifications


Novel gene therapy may have cured hemophilia A

It could positively change the lives of thousands of people around the world.

Tibi Puiu
December 14, 2017 @ 6:41 pm

share Share

Scientists may have just come across a cure for hemophilia A, the most common type of condition that affects the blood’s ability to clot. British researchers Barts Health NHS Trust and Queen Mary University of London used a novel gene therapy drug. They found 85 percent of clinical trial participants showed normal levels of the essential blood clotting protein Factor VIII over a year after the treatment was administered.

People with hemophilia can't stop bleeding because they're missing an essential blood-clotting protein. Credit: Pixabay.

People with hemophilia can’t stop bleeding because they’re missing an essential blood-clotting protein. Credit: Pixabay.

The hereditary genetic condition primarily affects men. Those suffering from hemophilia A have virtually none of the protein factor VIII in their blood, which is essential to clotting. Even the slightest injury can result in excessive bleeding as well as spontaneous internal bleeding, which can be life-threatening. Repeated bleeding into joints can also damage them or cause arthritis.

Previously, the only treatment for hemophilia involved weekly injections that control and prevent bleeding. There is no cure, however. British researchers are mighty close to one, fortunately.

In a groundbreaking trial involving 13 men with hemophilia A, researchers injected the participants with a copy of the missing gene that codes for the production of the clotting factor. The treatment was administered only once, in a single dose.

Nineteen months later, 11 out of 13 patients now have normal levels of the previously missing clotting factor. What’s more, all 13 patients have now stopped their once regular treatment.

 “We have seen mind-blowing results which have far exceeded our expectations. When we started out we thought it would be a huge achievement to show a five per cent improvement, so to actually be seeing normal or near normal factor levels with dramatic reduction in bleeding is quite simply amazing,” said Professor John Pasi, Haemophilia Centre Director at Barts Health NHS Trust and Professor of Haemostasis and Thrombosis at Queen Mary University of London, in a statement.

“We really now have the potential to transform care for people with haemophilia using a single treatment for people who at the moment must inject themselves as often as every other day. It is so exciting.”

This treatment has the potential to change how hemophilia is treated worldwide. It’s just remarkable how a single dose of treatment could change the lives of thousands of patients around the world now living with a life-threatening condition — people like Jake Omer, a 29-year-old from Billericay, UK. Before accessing the gene therapy, Jake, who was diagnosed with hemophilia at age two, had to inject factor VIII three times a week. He has arthritis in his ankles as a result of repeated bleeding.

“The gene therapy has changed my life. I now have hope for my future. It is incredible to now hope that I can play with my kids, kick a ball around and climb trees well into my kids’ teenage years and beyond. The arthritis in my ankles meant I used to worry how far I would be able to walk once I turned 40. At 23 I struggled to run 100m to catch a bus; now at 29 I’m walking two miles every day which I just couldn’t have done before having the gene therapy treatment,” Jake said in a statement.

“It’s really strange to not have to worry about bleeding or swellings. The first time I noticed a difference was about four months after the treatment when I dropped a weight in the gym, bashing my elbow really badly. I started to panic thinking this is going to be really bad, but after icing it that night I woke up and it looked normal. That was the moment I saw proof and knew that the gene therapy had worked.”

The British team now wants to extend the clinical trial to participants from the USA, Europe, Africa and South America.

Scientific reference: Savita Rangarajan et al, AAV5–Factor VIII Gene Transfer in Severe Hemophilia A, New England Journal of Medicine (2017). DOI: 10.1056/NEJMoa1708483.

share Share

Huge Study Links Ayahuasca to Mental Health Benefits—But It’s Not for Everyone

Naturalistic use of this Amazonian brew shows potential mental health benefits, but with risks.

Women Didn’t Live Longer Than Men in Medieval Times. Here's Why

Bones tell the story of gender and survival in Medieval London.

This hidden mineral is crumbling thousands of home foundations across New England. “It’s like your house was diagnosed with cancer”

Pyrrhotite causes cracks in concrete. But research on how widespread the issue might be has only scratched the surface.

Roman-Era Britons Had Scandinavian DNA Long Before Viking Raids

Centuries before the Vikings, Scandinavian roots intertwined with Britain's ancient history.

Loneliness makes you more prone to disease. Interacting with friends and family can help

Social isolation and loneliness are more than personal struggles—they're global public health crises.

Why Winter Smells So Fresh: The Science Behind the Seasonal Aroma

Ever noticed how winter air smells so uniquely crisp and fresh? It’s not just your imagination.

Scientists Achieve Quantum Teleportation Using Existing Internet Cables

Researchers demonstrate quantum teleportation over internet traffic, paving the way for secure applications.

9 in 10 new cars sold in Norway in 2024 were electric

Norway’s bold policies and long-term vision have turned it into a global leader in electric vehicle adoption.

This Radar System Can Detect Hidden Moisture in Your Walls

Mold is one of the most significant challenges for homeowners, and once it takes hold, it can be incredibly difficult to eliminate. Preventing mold is the best approach, and the cornerstone of mold prevention is managing humidity. Now, researchers from Oak Ridge National Laboratory (ORNL) have developed a method using microwave radar to monitor the […]

The surprising link between your pupils and how your brain stores memories at night

In the stillness of sleep, tiny pupil shifts in mice uncover a remarkable secret: the brain’s delicate act of preserving memories while forging new ones.