homehome Home chatchat Notifications


New Technology for Monitoring Glaucoma: Microfluidic Implant And Smart Phone App Monitoring

Stanford Professor of Bioengineering and Applied Physics, Stephen Quake, and Head of the Ophthalmic Science and Engineering Lab at Bar Ilan University Dr. Yossi Mandell teamed up and created a new device which allows glaucoma patients to continuously monitor pressure levels in their eyes – this provides not only a better monitoring, but it also […]

Mihai Andrei
September 15, 2014 @ 6:43 am

share Share

Image credits: Araci et al.

Stanford Professor of Bioengineering and Applied Physics, Stephen Quake, and Head of the Ophthalmic Science and Engineering Lab at Bar Ilan University Dr. Yossi Mandell teamed up and created a new device which allows glaucoma patients to continuously monitor pressure levels in their eyes – this provides not only a better monitoring, but it also means that patients don’t have to go to the doctor every week.

Glaucoma is a term describing a group of ocular disorders characterized by abnormal pressure in the eye. The nerve damage involves loss of retinal ganglion cells in a characteristic pattern. Glaucoma affects one in 200 people aged 50 and younger, and one in 10 over the age of 80. If it is picked up in its early stages, it can be treated, slowing its development or, in some cases, even stopping it. But monitoring glaucoma is quite a hassle, and in most countries, glaucoma treatments are (let’s say) less than ideal. This is where this device steps in.

The design is very elegant and effective – it features a tiny tube, capped at one end and opened on the other, filled with gas. As the fluid pressure pushes against the gas, a marked scale permits reading of the intraocular pressure. It has absolutely no effect whatsoever on the patient’s vision and it was made to fit inside a commonly used intraocular lens prosthetic, and implanted through simple surgery such as for cataracts which many glaucoma patients already receive. A smart phone (or laptop, or even Google Glass) enables the wearer to take snapshots, reporting the pressure.

Close-up showing fluid-gas interface and tick-marks indicating intraocular pressure. Araci et al.

 

Currently, patients have to go to the doctor to have their intraocular pressure tested every week, and cannot monitor spikes or sudden changes in pressure. Even so, measurements are sometimes not accurate, because pressure is affected by several external factors, such as posture, medication, and even tightly worn clothing; these wrong measurements can lead to misdiagnosis, and consequently, mistreatment.

“For me, the charm of this is the simplicity of the device,” Professor Quake said. “Glaucoma is a substantial issue in human health. It’s critical to catch things before they go off the rails, because once you go off, you can go blind. If patients could monitor themselves frequently, you might see an improvement in treatments.”

Before the implant can be tested in humans however, they still have to work on the durability of the materials, ensuring that it won’t degrade in the human eye. However, due to the simple design, this is not really expected to be a problem – there’s a myriad of materials which can be successfully applied.

Journal Reference: Ismail E Araci,Baolong Su,Stephen R Quake& Yossi Mandel. An implantable microfluidic device for self-monitoring of intraocular pressure. Nature Medicine 20, 1074–1078 (2014) doi:10.1038/nm.3621

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.