homehome Home chatchat Notifications


New Technology for Monitoring Glaucoma: Microfluidic Implant And Smart Phone App Monitoring

Stanford Professor of Bioengineering and Applied Physics, Stephen Quake, and Head of the Ophthalmic Science and Engineering Lab at Bar Ilan University Dr. Yossi Mandell teamed up and created a new device which allows glaucoma patients to continuously monitor pressure levels in their eyes – this provides not only a better monitoring, but it also […]

Mihai Andrei
September 15, 2014 @ 6:43 am

share Share

Image credits: Araci et al.

Stanford Professor of Bioengineering and Applied Physics, Stephen Quake, and Head of the Ophthalmic Science and Engineering Lab at Bar Ilan University Dr. Yossi Mandell teamed up and created a new device which allows glaucoma patients to continuously monitor pressure levels in their eyes – this provides not only a better monitoring, but it also means that patients don’t have to go to the doctor every week.

Glaucoma is a term describing a group of ocular disorders characterized by abnormal pressure in the eye. The nerve damage involves loss of retinal ganglion cells in a characteristic pattern. Glaucoma affects one in 200 people aged 50 and younger, and one in 10 over the age of 80. If it is picked up in its early stages, it can be treated, slowing its development or, in some cases, even stopping it. But monitoring glaucoma is quite a hassle, and in most countries, glaucoma treatments are (let’s say) less than ideal. This is where this device steps in.

The design is very elegant and effective – it features a tiny tube, capped at one end and opened on the other, filled with gas. As the fluid pressure pushes against the gas, a marked scale permits reading of the intraocular pressure. It has absolutely no effect whatsoever on the patient’s vision and it was made to fit inside a commonly used intraocular lens prosthetic, and implanted through simple surgery such as for cataracts which many glaucoma patients already receive. A smart phone (or laptop, or even Google Glass) enables the wearer to take snapshots, reporting the pressure.

Close-up showing fluid-gas interface and tick-marks indicating intraocular pressure. Araci et al.

 

Currently, patients have to go to the doctor to have their intraocular pressure tested every week, and cannot monitor spikes or sudden changes in pressure. Even so, measurements are sometimes not accurate, because pressure is affected by several external factors, such as posture, medication, and even tightly worn clothing; these wrong measurements can lead to misdiagnosis, and consequently, mistreatment.

“For me, the charm of this is the simplicity of the device,” Professor Quake said. “Glaucoma is a substantial issue in human health. It’s critical to catch things before they go off the rails, because once you go off, you can go blind. If patients could monitor themselves frequently, you might see an improvement in treatments.”

Before the implant can be tested in humans however, they still have to work on the durability of the materials, ensuring that it won’t degrade in the human eye. However, due to the simple design, this is not really expected to be a problem – there’s a myriad of materials which can be successfully applied.

Journal Reference: Ismail E Araci,Baolong Su,Stephen R Quake& Yossi Mandel. An implantable microfluidic device for self-monitoring of intraocular pressure. Nature Medicine 20, 1074–1078 (2014) doi:10.1038/nm.3621

share Share

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.