homehome Home chatchat Notifications


Resurrected drug could help us better fight viruses

Stanford researchers are proposing something different: they want to boost our body's defense systems instead of targeting the virus.

Mihai Andrei
February 13, 2017 @ 10:35 pm

share Share

Fending off viruses will likely be one of the greatest challenges of our century. As the recent Ebola and Zika virus outbreaks have shown, we’re still highly vulnerable. With that in mind, a group at Stanford is trying a different approach: they want to boost our body’s defense systems instead of targeting the virus.

Image via Pixabay.

Scientists typically take a “one drug, one bug” approach to fighting viruses. But Jeffrey Glenn, an associate professor of medicine and of microbiology and immunology wants to develop one drug that fights multiple viruses. He founded a research center and teamed up with several other researchers, including Chaitan Khosla, a professor of chemistry and of chemical engineering. Khosla said they wanted to focus against viruses that use RNA rather than DNA as their genetic material:

“Most of the really nasty viruses use RNA,” Khosla said, including Ebola, dengue, Zika and Venezuelan equine encephalitis virus (VEEV), a mosquito-borne virus that infects horses but can also kill people.

DNA stores biological information. It is a double-stranded molecule, carrying most of the genetic instructions used in the development, functioning, and reproduction of all known living organisms and many viruses. Think of it as a blueprint for living organisms. Meanwhile, RNA is a single-stranded molecule which helps carry out DNA’s blueprint guidelines. RNA mutation rate is higher than DNA mutation rate and these viruses are also generally less stable.

Instead of developing the drug from scratch, they looked to see if something promising existed already for them to build on. They found the right candidate in a drug developed by GlaxoSmithKline. However, after a few papers published about it, the drug was shelved without a public explanation. They resurrected it and gave it a new life. After several tests, they found out how it works, and why it doesn’t work perfectly.

The drug interferes with a protein that is crucial for making the individual building blocks of RNA, the genetic code for the virus. Without RNA the virus can’t make more of itself. This was a very elegant solution which in theory, works without any significant side effects or toxicity. However, the drug was shelved because it also prevented the body’s healthy cells from dividing.

So the Stanford researchers tweaked it, adding a slightly different building block that can only be used to generate DNA, not RNA. With this change, the drug still helped the body fight off viruses, but also enabled healthy cells to divide properly. So far, all lab tests have indicated its success.

The next steps are animal tests, and if everything works out fine, then it may become a broad-spectrum antiviral strategy for humans.

Finding appeared in the journal Nature Chemical Biology.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.