homehome Home chatchat Notifications


Researchers find marijuana spreads and prolongs pain

We’ve all endured some kind of physical pain, more or less intense. When you hit your finger while hammering, for example, the pain is really intense, but passes away (at least mostly) in just a few moments. So scientists were trying to find out why is it that some intense pains pass so quickly and […]

Mihai Andrei
August 14, 2009 @ 12:47 pm

share Share

We’ve all endured some kind of physical pain, more or less intense. When you hit your finger while hammering, for example, the pain is really intense, but passes away (at least mostly) in just a few moments. So scientists were trying to find out why is it that some intense pains pass so quickly and why some have to be endured for more time.

Researchers from the University of Texas Medical Branch of Galveston believe they have, at least partially, found the answer, which is, believe it or not, in a group of compounds that include cannabinoids, the active ingredients in marijuana, or weed, as anybody under 40 (and not only) knows it as. This proves to be very interesting, given the recent research and interest in medical use of marijuana for pain relief. According to this study, the results are the exact opposite, as endocannabinoids, which are produced by human body (and not only) prolong pain istead of damping it down.

“In the spinal cord there’s a balance of systems that control what information, including information about pain, is transmitted to the brain,” said UTMB professor Volker Neugebauer, one of the authors of the Science article, along with UTMB senior research scientist Guangchen Ji and collaborators from Switzerland, Hungary, Japan, Germany, France and Venezuela. “Excitatory systems act like a car’s accelerator, and inhibitory ones act like the brakes. What we found is that in the spinal cord endocannabinoids can disable the brakes.”

In order to get to this conclusion they applied a ‘biochemical mimic’ to the inhibitory neurons on slices they took from mouse spinal cord. Electrical signals that should have produced an inhibitory response were ignored. They then proceeded to analyze spinal cord slices taken from genetically engineered mice that lacked receptors for the endocannabinoid molecules and they found that the so called ‘brakes’ work.

“To sum up, we’ve discovered a novel mechanism that can transform transient normal pain into persistent chronic pain,” Neugebauer said. “Persistent pain is notoriously difficult to treat, and this study offers insight into new mechanisms and possibly a new target in the spinal cord.”

share Share

Newborns Feel Pain Long Before They Can Understand It

Tiny brains register pain early, but lack the networks to interpret or respond to it

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Just Proved Ancient Humans Were in North America 10,000 Years Earlier Than We Thought

Ancient mud tells a story critics can no longer ignore

Scientists uncover anti-aging "glue" that naturally repairs damaged DNA

Researchers have newly found a very important function for a well-known enzyme.

Why Bats Don’t Get Cancer—And What That Could Mean for Us

Bats can live up to 40 years without developing cancer. Scientists now know why.

Climate Change Unleashed a Hidden Wave That Triggered a Planetary Tremor

The Earth was trembling every 90 seconds. Now, we know why.

Revolutionary single-dose cholesterol treatment could reduce levels by up to 69%

If confirmed, this could be useful for billilons of people.

Iron Deficiency Can Flip The Genetic Switch That Determines Sex, Turning Male Embryos into Female

Researchers show maternal iron levels can override genetic sex determination in mice.

Taking Vitamin D Daily Might Actually Slow Down Aging at the Cellular Level

A new clinical trial suggests vitamin D slows cellular aging by preserving telomere length.

This Baby’s One-in-a-Million Genetic Disorder Had No Cure. So Scientists Designed One Just for Him

The first personalized CRISPR therapy saved a child’s life. Can it save others too?