homehome Home chatchat Notifications


Some parasitic plants can steal genes then use them against their hosts

That's not very nice.

Alexandru Micu
October 25, 2016 @ 8:22 pm

share Share

A new Penn State university study found 52 cases of nonsexual transfer of DNA — or horizontal gene transfer (HGT) — from a host plants into a parasitic species known as broomrapes (genus Orobanche).

Image credits Joshua Tree National Park / Flickr.

The transferred genes became functional in the parasites, said Claude dePamphilis, professor of biology at Penn State and co-author of the paper. Although HGT is rare in complex life, discovering that it can occur in parasitic plants could help us better defend our crops against them.

The team used genetic data to generate the evolutionary histories of thousands of genes in the parasite plants, dePamphilis said. They then looked at the transcriptomes — the expressed gene sequences — of three of these plants: Triphysaria versicolor (yellowbeak owl’s-clover), Striga hermonthica (giant witchweed) and Phelipanche aegyptiaca (Egyptian broomrape). They also examined the non-parasitic plant Lindenbergia philippensis, and genome sequences from 22 other non-parasitic plants. Because they also considered mithocondrial RNA (which can move between the host and the parasite) as a possible source for the transfers, they had to test all the data and rule out their experimental hosts as the source of genetic material. They found that the “foreign” sequences in the parasites had been derived from entire genes of past hosts, incorporated into the parasites’ genomes.

“[The broomrape family] includes some of the the world’s most devastating agricultural weeds,” said dePamphilis.

“The HGT discovery is really part of our effort to try to better understand how parasitic plants work and how we can better control them. Our hope is that we can use this information to find the best strategies to generate, or breed, resistant host plants.”

The researchers believe this transfer boosts the parasite’s ability to invade their host and overcome its natural defenses. The genes stolen this way could also provide the parasite with increased resistance to infection and pathogens the host plant has evolved to fight against.

HGT is actually pretty common in simple organisms, like bacteria. But complex life, such as you, or me, or a cucumber, transfers genes vertically — through the sexual exchange of DNA, with mutations and natural selection providing the means and incentive for evolution. But the researchers think the close feeding connections between the parasite plants and their hosts increases the chance of genes finding their way to the parasite, where they can become functional.

“Parasitic plants seem to have a far greater rate of horizontal gene transfer than non-parasitic plants and we think this is because of their very intimate connection they have with their host,” said dePamphilis.

Parasite plants push roots into their host, which they use to extract water, sugars, minerals, even nucleic acids such as DNA and RNA, dePamphilis added.

“So, they are stealing genes from their host plants, incorporating them into the genome and then turning those genes back around, very often, as a weapon against the host.”

This kind of plants plague farmers (figuratively speaking) around the world. In some areas, they are so numerous that they’re a major driver behind crop loss. In Sub-Saharan Africa the witchweed (Striga) is one of the biggest source of crop yield loss.

Future research may investigate the mechanism of horizontal gene transfer to help engineer improved plant defenses against parasitic attacks, dePamphilis concluded.

The full paper titled “Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.