homehome Home chatchat Notifications


Stem Cell therapy could help us grow back fingers

Mammals can naturally regenerate the very top of their fingers and toes after amputation; starting from this idea, researchers have demonstrated the mechanism that describes this process, and explain how stem cells from nails could play a pivotal role in future regeneration of entire fingers. A study conducted on mice showed that the chemical signal […]

Mihai Andrei
June 14, 2013 @ 8:50 am

share Share

Mammals can naturally regenerate the very top of their fingers and toes after amputation; starting from this idea, researchers have demonstrated the mechanism that describes this process, and explain how stem cells from nails could play a pivotal role in future regeneration of entire fingers.

fingers

A study conducted on mice showed that the chemical signal that triggers stem cells to develop into new nail tissue also attracts nerves that promote bone and nerve regeneration. The study suggests that nail stem cells could be used to develop new regeneration treatments for amputees.

Mice are pretty similar to humans in thhis regard – in both species, regenerating a finger starts with regenerating the nail. But whether the amputated portion of the digit actually takes place depends on exactly where the amputation occurs – if the stem cells in the nails are amputated as well, then no regeneration takes place. But if a small portion of the nail still remains in place, then it does regenerate. To understand exactly why these stem cells are so important, researchers turned to mice.

The two unfortunate groups of mice were separated into two groups – one control group, and one which was treated with a drug that made them unable to make the signals for new nail cells to develop. The second group was unable to regenerate, while the first one did this just fine, in time. When the signal was replenished, the second group resumed regeneration.

Limb regeneration is a very interesting field for biologists at the moment; a vast number of animals can regenerate lost limbs, most notably amphibians – aquatic salamanders can regenerate complete limbs, and even parts of their heart, by a process which involves their immune system. By studying species which are close to us and understanding the mechanism through which they regenerate, we could some day apply the same techniques to humans.

Via Discovery

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

If You Need Only 4 Hours of Sleep, You Might Have This Rare Genetic Mutation

Short sleepers cruise by on four to six hours a night and don’t seem to suffer ill effects. Turns out they’re genetically built to require less sleep than the rest of us.

New study using CRISPR technology reveals a way to make tomatoes sweeter without sacrificing yield.

The findings could transform the agriculture industry and cater to consumer demands for tastier produce.

Ants discovered agriculture 66 million years ago

The same asteroid that wiped out the dinosaurs may have led ants to farm fungus.

The phage wars: multiple viruses block each other from infecting cells

More of a bad thing is usually bad. But in the case of viruses, it may be good.

Discovering new anti-aging secrets from the world's longest-living vertebrate

Greenland sharks could hold the secret to better cardiovascular health.

Neanderthal interbreeding might have made humans more prone to autism

Neanderthal genes from ancient interbreeding may increase our susceptibility to autism.

Slight genetic tweak can increase sugarcane yield by almost 20%

Researchers fine-tuned the leaf angle of sugarcane plants — and the results were striking.

Scientists discover gene for trust – here’s how it could be linked to good health

A gene can help explain why people who easily trust others have better health.

Chernobyl mutant wolves may have evolved resistance to cancer

In the radioactive exclusion zone of Chernobyl the immune systems of wild wolves have undergone striking adaptation.