homehome Home chatchat Notifications


Scientists confirm weird 'knot-shaped' DNA structure in human cells for the first time

Forget the double-helix for a second -- there are other, more interesting DNA structures out there.

Tibi Puiu
April 24, 2018 @ 12:13 am

share Share

You’re familiar with the famous double-helix structure of DNA (dsDNA) but that’s not the only structure there is. The molecule that contains the instructions an organism needs to develop, live and reproduce actually comes in multiple forms, including A-DNA, Z-DNA, triplex DNA and Cruciform DNA. These have only been seen in the lab so far, however. Now, in a breakthrough research, scientists report seeing for the first time so-called intercalated or i-motif DNA in human cells. Previously, this rare DNA structure was only witnessed in vitro, rather than in live cells.

The i-motif DNA structure. Credit: Garvan Institute of Medical Research.

The i-motif DNA structure. Credit: Garvan Institute of Medical Research.

Instead of a twisted track, i-motif DNA resembles a twisted knot. Australian researchers at Sydney’s Garvan Institute explored whether i-motif existed in living cells by developing an antibody fragment called iMab that would bind to it and no other form.

The antibody was visible thanks to its green fluorescent tag, showing how it came and went as the cells progressed through their cycles of division. Mahdi Zeraati, the first author of the new study, and colleagues could see green spots (i-motifs) appearing an disappearing over time, which suggested the novel DNA structure was forming, dissolving, and forming again. The findings generally indicate that transient i-motifs form late in the cell’s life cycle — more specifically, in the so-called G1 phase, when DNA is being actively interpreted.

“When most of us think of DNA, we think of the double helix,” said Daniel Christ, Associate Professor at Garvan, who co-led the research. “This new research reminds us that totally different DNA structures exist – and could well be important for our cells.”

Artist impression of the i-motif DNA structure. Credit: Chris Hammang.

Artist impression of the i-motif DNA structure. Credit: Chris Hammang.

Zeraati’s team injected the antibody into a variety of cells and found that it appeared in several targets across the cells. It mostly stayed away from the parts that code for proteins, and instead was involved in regulatory regions that switch genes on and off (promoters) and telomeres (chromosome tips).

Previously, in 2013, scientists had identified another kind of DNA structured called G-quadrupled (G4) DNA in human cells. Scientists had also used an engineered antibody to reveal the G4 DNA structure within live cells.

“We think the coming and going of the i-motifs is a clue to what they do. It seems likely that they are there to help switch genes on or off, and to affect whether a gene is actively read or not,” Zeraati said.

What’s perhaps the most shocking part about i-motif is its structural rules or, rather, blatant disregard for them. Genetics 101 says that DNA follows some strict base-pairing rules where adenine (A) always binds to thymine (T), and cytosine (C) always hooks up with guanine (G). However, in the knot structure, C letters on the same strand of DNA bind to each other.

Various alternative DNA shapes.

Various alternative DNA shapes.

In the future, Zeraati and colleagues will attempt to learn what exact functions these DNA structures serve inside our bodies. Also, perhaps other alternative DNA conformations exist in human live cells, as well, such as A-DNA, Z-DNA, triplex DNA, and cruciform DNA. Such discoveries might open the gates for a new age of genetic research.

The findings appeared in the journal Nature Chemistry.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.