homehome Home chatchat Notifications


How humans and squids came to have similar eyes

Humans and squids are not exactly close relatives – as a matter of fact, we’re really different from squids, so how come we came to have surprisingly similar eyes? The answer, as usually, is in our genes. Eyes are complicated things – and like all organs, they rely on many genes working together, keeping everything […]

livia rusu
May 6, 2014 @ 1:08 pm

share Share

Humans and squids are not exactly close relatives – as a matter of fact, we’re really different from squids, so how come we came to have surprisingly similar eyes? The answer, as usually, is in our genes.

Eyes are complicated things – and like all organs, they rely on many genes working together, keeping everything fit and tight. Most of the genes involved in making the eye read like a parts list – this gene makes this, and that gene makes that. But, like in any orchestra, you need someone to direct and tell the others what to do – the same goes for genes. That gene here is called PAX6.

Like all genes, PAX6 works sort of like an instruction code, written in DNA language. In order for it to work, it first has to be translated into a different code, which is RNA. The interesting thing is that RNA can be edited – things can be added, things can be removed, and more interestingly, things can be spliced – that is, removing a piece from the middle of the code, and stitching the two ends together. Due to this editing, sometimes RNA sequences can become identical following different paths.

Such is the case with the human eye. In a new study, Atsushi Ogura at the Nagahama Institute of Bio-Science and Technology and colleagues found that Pax6 RNA splicing has led to the development of a camera eye in a surprising lineage which occurs in the cephalopods – a group which includes squid, cuttlefish, and octopus. The fact that the gene can be found in cephalopods, mammals and birds shows that the gene developed before the diversification. It’s remarkable that it reached such similarities through different paths, so that an organisms like humans and cephalopods have similar eyes, after hundreds of millions of years of parallel evolution.

Source.

share Share

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

Sharks Aren’t Silent After All. This One Clicks Like a Castanet

This is the first evidence of sound production in a shark.

23andMe Just Filed for Bankruptcy and Your DNA Could Be Up for Grabs

A company once worth billions now faces a reckoning over the fate of your genetic data

This Medieval Bear in Romania Was A Victim of Human Lead Pollution

One bear. Six years. One hidden history of pollution brought to light by a laser.

World’s Oldest Person Had Cells 17 Years Younger Than Her Age. The Surprising Diet and Habits That Helped Her Live to 117

The supercentenarian’s gut health may hold the key to longevity.

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

New research reveals an extraordinary journey across the Pacific that defies what we thought was possible.

Finally, mRNA vaccines against cancer are starting to become a reality

mRNA vaccines were first developed years ago to target cancers and now they're really starting to show promise.

When Did Humans First Speak? New Genetic Clues Point to 135,000 Years Ago

Language is one of the biggest force multipliers in our species. It appeared earlier than expected.

Magnolias are so ancient they're pollinated by beetles — because bees didn't exist yet

Before bees, there were beetles