homehome Home chatchat Notifications


Feeding the world through global warming: Altering one plant gene makes for climate-resilient crops

It's estimated that humanity will have to produce around 50% more food than we currently do to keep up with growing global demand....by 2050. It's an enormous challenge, especially as more and more countries face the effects of climate change, such as drought or toxic salinity levels. One of our best hopes is to rely more on crops that can flourish despite the vicissitudes of the environment, and plant cell biologists at the University of Oxford hope that their new breakthrough in climate-resilient agriculture will allow us to do just that.

Alexandru Micu
October 8, 2015 @ 1:34 pm

share Share

It’s estimated that humanity will have to produce around 50% more food than we currently do to keep up with growing global demand….by 2050. It’s an enormous challenge, especially as more and more countries face the effects of climate change, such as drought or toxic groundwater salinity levels. One of our best hopes is to rely more on crops that can flourish despite the vicissitudes of the environment, and plant cell biologists at the University of Oxford hope that their new breakthrough in climate-resilient agriculture will allow us to do just that.

Corn plants damaged by extreme heat and drought conditions stand in a field in Carmi, IL. Image credit: Daniel Acker/Bloomberg

Though not a new field of research, Oxford’s study offers a new angle on the problem by looking at plant genetics for a way to make our crops sturdier in the face of wilder weather and more harsher climate. The team has discovered a gene that can be used to give plants in a laboratory setting more resilience, making them thrive instead of whither when unfavourable conditions strike. Their research has been published in the print edition of Current Biology.

The gene known as SP1 is found in all plants and plays a regulatory function in photosynthesis, controling the influx of proteins to the plant cells’ chloroplasts. When a plant becomes “stressed” from say, too much salt in the groundwater, the photosynthetic machinery bogs down.

“One of the undesirable consequences of too much photosynthesis under stressed conditions is the overproduction of toxic molecules called ‘reactive oxygen species’,” says Paul Jarvis, plant cell biologist at Oxford University, and author on the new paper.

This build up of toxins in the strained plant always leads to its untimely death, and withered plants make for poor harvests. To prevent this accumulation of toxins, photosynthesis must be slowed down during times of stress, and here is where the Oxford research hits home — the team found that they could modify the SP1 gene to reduce the flow of proteins to the chloroplasts.

“We found that if you alter the activity of SP1 you can modify the extent to which photosynthesis takes place,” Jarvis explains.

Together with his co-researcher Qihua Ling, a post-doctoral research associate at the university, Jarvis tested the theory by simulating conditions of high salinity and extreme dryness and noting how three groups of plants reacted in this environment: normal wild cress, cress engineered to lack SP1, and another engineered to over-express the gene.

“What we found was that the plants with high levels of SP1 were more tolerant of several different stresses,” Jarvis explains. Those SP-loaded plants photosynthesised less, produced fewer of the associated toxins under stress, and so were more resilient to environmental flux.

There’s a chance the plants may be trading photosynthesis for survival, potentially compromising their overall productivity. But SP1 functions in ways that aren’t fully understood yet, and it’s also possible that it might only intensify its responsiveness in times of stress, according to Jarvis. He also notes that there are viable ways of reducing this potential compromise — namely, engineering plants to express SP1 only when they’re under pressure.

Jarvis and his colleagues are now applying their discovery to other plants like tomatoes, brassica, wheat, and rice — the latter two especially, because they’re staple crops for billions globally. While the research is still at a preliminary stage, in the future it could form part of a toolbox that enables us to breed tougher, more climate-ready crops — a challenge of growing pertinence, as we face the looming threat of lowered yields.

“Food security is on everybody’s minds,” says Jarvis. “We have an issue with population growth, and we’re losing in the region of 50% of yields to consequences of stress. So with that backdrop, it becomes exciting if you can identify a gene that potentially could mitigate that loss.”

 

share Share

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

The US wants to know if researchers in other countries follow MAGA doctrine

Science and policy are never truly free from one another. But one country's policy doesn't typically cross borders.

A Week of Cold Plunges Could Help Your Cells Fight Aging and Disease

Cold exposure "trains" cells to be more efficient at cleaning themselves up.

England will start giving morning-after pill for free

Free contraception in the UK clashes starkly with the US under Trump's shadow.

Japan’s Cherry Blossoms Are Blooming Earlier Than Ever. Guess Why

Climate change is disrupting natural cycles.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

A Gene-Edited Pig Liver Was Hooked to a Human for 10 Days and It Actually Worked

Breakthrough transplant raises hopes for patients needing liver support or awaiting transplants.