homehome Home chatchat Notifications


Scientists play with a flatworm and grow another species' head instead

It sounds like a plot from Frankenstein, but apparently there's no limit to how versatile flatworms can be. Previously, researchers at Tufts University determined that the small, yellow worm can retain its memories after it head was severed. As a reminder, flatworms can regrew new heads following decapitation. Now, the same team yet again guillotined some flatworms and interrupted gap junctions, which are protein channels that enable cells to communicate with each other by passing electrical signals back and forth - just to see what would happen. Yes, the flatworm grew a new head, but it was that of another flatworm species. They eventually induced the same flatworm species to grow the heads and brains of multiple other, closely related species. There's a lot of biology and behaviour encoded in genes, but these findings show that tweaking physiological mechanisms in a live body can actually cause new anatomical developments. We might have uncovered a new form of epigenetics.

Tibi Puiu
November 26, 2015 @ 11:01 pm

share Share

Tufts biologists induced one species of flatworm -- G. dorotocephala, top left -- to grow heads and brains characteristic of other species of flatworm, top row, without altering genomic sequence. Examples of the outcomes can be seen in the bottom row of the image.

Tufts biologists induced one species of flatworm — G. dorotocephala, top left — to grow heads and brains characteristic of other species of flatworm, top row, without altering genomic sequence. Examples of the outcomes can be seen in the bottom row of the image.

It sounds like a plot from Frankenstein, but apparently there’s no limit to how versatile flatworms can be. Previously, researchers at Tufts University  determined that the small, yellow worm can retain its memories after it head was severed. As a reminder, flatworms can regrew new heads following decapitation. Now, the same team yet again guillotined some flatworms and interrupted gap junctions, which are protein channels that enable cells to communicate with each other by passing electrical signals back and forth – just to see what would happen. Yes, the flatworm grew a new head, but it was that of another flatworm species. They eventually induced the same flatworm species to grow the heads and brains of multiple other, closely related species. There’s a lot of biology and behaviour encoded in genes, but these findings show that tweaking physiological mechanisms in a live body can actually cause new anatomical developments. We might have uncovered a new form of epigenetics.

“It is commonly thought that the sequence and structure of chromatin – material that makes up chromosomes – determine the shape of an organism, but these results show that the function of physiological networks can override the species-specific default anatomy,” says the paper’s senior and corresponding author Michael Levin, Ph.D., who holds the Vannevar Bush Chair in biology and directs the Center for Regenerative and Developmental Biology in the School of Arts and Sciences at Tufts. “By modulating the connectivity of cells via electrical synapses, we were able to derive head morphology and brain patterning belonging to a completely different species from an animal with a normal genome.”

The researchers at Tufts worked with  Girardia dorotocephala – a flatworm species known for its extraordinary regenerative capability. After severing the head, the researchers introduced a transient perturbation of physiological connectivity among cells. Despite the worm had the same genome, once it started to regenerate a new head its morphology, and consequently that of the brain, was altered. By varying this disturbance the researchers grew heads that resemble those of flatworm cousins. The closer the two species were related, the easier it was to effect the change, suggesting there’s an evolutionary connection that allowed these worms to morph their body parts. You can see from the picture posted above just how insanely close the worms grew their heads similar to other species.

Oddly enough, this change is temporary. Weeks after the planaria completed regeneration to the other species’ head shapes, the worms once again began remodeling and re-acquired their original head morphology.

The flatworm is really an inexhaustible well of wisdom. For instance, they’re the primary object of study for researchers working the field of longevity. Some claim that flatworms are immortal. The flatworm not only is able to regenerate its old, dead cells, but it can literary grow a new brain, gut or tail when severed in two. Both cut ends grow into a new individual. Over the course of their several year long research, Notthingham University scientists have cloned a few thousand individuals starting from one single flatworm that was cut in two, which were also at their own term cut in two, and so on so forth. What can we learn from the flatworm’s latest trick? Well, doctors might find a way to fix birth defects or cause new biological structures to grow after an injury, according to Levin. “These findings raise significant questions about how genes and bioelectric networks interact to build complex body structures,” he says.

 

share Share

Neanderthals Turned Cave Lion Bone into a 130,000-Year-Old 'Swiss Army Knife'

130,000-year-old discovery reveals a new side to our ancient cousins.

This Bionic Knee Plugs Into Your Bones and Nerves, and Feels Just Like A Real Body Part

No straps, no sockets: MIT team created a true bionic knee and successfully tested it on humans.

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

New material mimics plastic’s versatility but biodegrades like a leaf.

Researchers Recreate the Quintessentially Roman Fish Sauce

Would you like some garum with that?

Why Warmer Countries Have Louder Languages

Language families in hotter regions evolved with more resonant, sonorous words, researchers find.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.