homehome Home chatchat Notifications


Humans and chimp brains may have a turbo-charged fight-or-flight response

Such adaptations could form the evolutionary roots of human warfare.

Alexandru Micu
April 20, 2018 @ 3:08 pm

share Share

Humans and chimpanzees have a much more active fight-or-flight response than any other primates, a new study reports. The findings point to the role aggression and warfare played in our evolutionary history and that of our closest relatives.

Fist.

Image via Pxhere.

Biology has no qualms letting organisms get dirty, even downright aggressive, to secure their interests. Faced with so many potential crazies, our brains (along with those of most complex organisms) have evolved a protocol whose single purpose is to determine whether we should throw the towel or a fist when faced with a threat. New research suggests that this protocol is unusually active in humans and our closest relatives, the chimpanzees, suggesting an evolutionary history fraught with aggression and large-scale conflict.

Knuckleheads

Aptly dubbed the ‘fight-or-flight’ response, this hard-wired security protocol is primarily controlled by the automatic nervous system (ANS) — a division of the nervous system that oversees the activity of smooth muscles (those in your organs) and glands throughout the body. For the most part, the ANS works outside of our conscious perception or control and regulates heart rate, digestion, respiratory rate, pupillary response, urination, and sexual arousal.

According to a new paper by a team of US and Korean researchers, this system is much more active in humans and chimps compared to other primates. They note that humans and chimps are the only primates known to frequently engage in warfare (i.e. large-scale conflict), suggesting that this adaptation of the fight-or-flight response evolved in response to frequent aggression or threat of conflict.

To find evidence of this adaptation, the team looked at how different primate species regulate a gene called ADRA2C. The gene’s main function is to temper the activity of the sympathetic nervous system, which plays a central role in forming the fight-or-flight response. To that end, they analyzed the genomes, transcriptomes (the entire set of genes expressed in a cell), and epigenomes (the compounds external to DNA which can bind to it to affect gene expression) from humans, chimps, and other primates.

They report that humans and chimps evolved both genetic and epigenetic changes that decrease ADRA2C expression — in other words, that increase both the fightiness and the flightiness of their brains. Macaques don’t have these changes, and they’re not universal in bonobos, suggesting that the gene variants spread through the population recently (after we parted ways on the tree of life), most likely in response to the threat of conflict. The team further used CRISPR/Cas9 to show that reverting to the genetic states of macaques and bonobos will restore ADRA2C expression to higher levels.

Variations in ADRA2C gene expression can have significant effects on behavior. For example, changes in the gene that occurred during chicken domestication likely resulted in the somewhat aloof and un-aggressive birds we know today. The team notes that finding adaptations associated with a reduced expression of ADRA2C in chimps and humans but not in their relatives suggests that it was inter-group aggression — rather than an outside threat, such as that of predators — which shaped these genes. They also believe such adaptations could form the evolutionary roots of human warfare — which, in turn, could have shaped much of society as we know it.

The paper “Selection on the regulation of sympathetic nervous activity in humans and chimpanzees” has been published in the journal PLOS Genetics.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.