homehome Home chatchat Notifications


Is evolution predictable? Research shows specialization isn't that special after all

There are millions of species on Earth, and naturally understanding the mechanics of evolution is of great importance for understanding further on what sparks life. What sparks consciousness, well that’s a whole different ball-game. Currently, scientists are concentrating on how diversification occurs in order to better their knowledge of how so many species surfaced along […]

Tibi Puiu
February 20, 2013 @ 1:33 pm

share Share

There are millions of species on Earth, and naturally understanding the mechanics of evolution is of great importance for understanding further on what sparks life. What sparks consciousness, well that’s a whole different ball-game. Currently, scientists are concentrating on how diversification occurs in order to better their knowledge of how so many species surfaced along the eons. Is this task impossible though? Is evolution itself predictable?

ecoli

The E. coli bacteria. (c) Food Poison Journal

A recent research by scientists at University of British Columbia seems to suggests so, after they breaded three separate populations of the popular lab pet bacteria, E. coli, for a whooping 1200 generations. What they found is that eventually each population, though separate and independent from each other, evolved in very similar and in some respects identical strains to accommodate to their new environments.

Conducted by Matthew Herron and Michael Doebeli, the experiment involved placing each of the E. coli populations in an environment with two different sources of dietary carbon – glucose and acetate. In the beginning all bacteria behaved as generalists, after some 1200 generations though the bacteria branched into two distinct species, each specialized on eating one of the two food sources. This happened in each of the three separate populations.

Simple empirical observations weren’t enough, so prudent as they are, the scientists were careful to freeze samples from each population at 16 different points during their evolution. Recent advances in sequencing technology allowed the scientists to sequence large numbers of whole bacterial genomes, so the researchers had now access to a large volume of highly valuable data.

What they found was absolutely striking similarities in how the bacteria evolved. Basically, for all populations a core set of genes were causing the two different phenotypes that they saw, and in some cases the researchers witnessed the very same exact genetic change at play.

“There are about 4.5 million nucleotides in the E. coli genome,” said co-author Matthew Herron, research assistant professor at the University of Montana. “Finding in four cases that the exact same change had happened independently in different populations was intriguing.”

The obvious conclusion: selection can be deterministic.

“Not only did similar genetic changes occur, but the temporal sequence in which the changes occur over evolutionary time was also similar between the different evolving populations. This ‘parallelism’ implies that diversification is a deterministic process driven by natural selection,” said co-author and University of British Columbia zoologist Prof. Michael Doebeli.

The authors claim that negative frequency dependence – a well known particular form of selection – plays a major role in driving diversification. Simply put, a bacteria specialized on feeding on an alternative resource will be at an advantage, and thus have greater chances of passing its genes.

Is this research flawed, however? Considering the study only focuses on only a single type of bacteria, this might be the case. Evolution is not simple, by any means, and despite it might be governed by a fixed set of laws, the fabrics of its creation can be rather startling.

Nevertheless, the authors plan on repeating the experiment and conduct other more in order to see whether these conclusions remain the same at a larger scale and with larger, more complicated organisms.

Findings were published in the  journal PLOS Biology.

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

If You Need Only 4 Hours of Sleep, You Might Have This Rare Genetic Mutation

Short sleepers cruise by on four to six hours a night and don’t seem to suffer ill effects. Turns out they’re genetically built to require less sleep than the rest of us.

The explosive secret behind the squirting cucumber is finally out

Scientists finally decode the secret mechanism that has been driving the peculiar seed dispersion action of squirting cucumber.

Cars Are Unwittingly Killing Millions of Bees Every Day, Scientists Reveal

Apart from pollution, pesticides, and deforestation, cars are also now found to be killing bees in large numbers.

New study using CRISPR technology reveals a way to make tomatoes sweeter without sacrificing yield.

The findings could transform the agriculture industry and cater to consumer demands for tastier produce.

Could CAR-T Therapy Be the End of Lifelong Lupus Medication? Early Results Say 'Yes'

T-cells are real life saviors. If modified properly, they can save lupus patients from the trouble of taking medicines regularly.

Could Spraying Diamonds into the Sky Be the Key to Cooling the Planet?

Nothing is more precious than our planet, and we must cool it fast. Scientists say this can be done by decorating the sky with diamonds.

Scientists bioengineer mussel-inspired bacteria that sticks to and break down plastic waste

The modified bacteria clings 400 times better to plastic than normal bacteria.

Nearly all fish in the US are still contaminated by mercury. Here's what you need to know

Researchers have been sounding the alarm for years, but the US still has a big mercury pollution problem.

Ants discovered agriculture 66 million years ago

The same asteroid that wiped out the dinosaurs may have led ants to farm fungus.