homehome Home chatchat Notifications


There's a second layer of information in our DNA, researchers find

We're still uncovering the secrets of the building blocks of life.

Mihai Andrei
June 13, 2016 @ 6:04 pm

share Share

Theoretical physicists studying human DNA have revealed that it’s not just the information coded into our DNA that decides who we are – the way in which the DNA folds itself also controls how genes are expressed in our bodies.

DNA illustration, via Pixabay.

The fact itself has been known for years, and biologists have even determined some of the proteins which direct DNA folding. What this study brings new is that it demonstrates just how this folding affects our bodies and controls our evolution.

DNA is a funny thing. Everything in our body is “directed” by DNA with the same DNA chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). These chemicals pair off into A/T and C/G base pairs which then form into sequences, or “genes.”  Each cell contains a sequence of six billion base pairs. If these pairs were put in a straight line, they’d add up to almost two meters, or 79 inches. To fit that into something as small as a cell, the pairs need to be folded into a dense bundle, containing as many as 10,000 loops called a nucleosome. The way the nucleosome is folded is crucial for the gene expression.

The way the DNA is wrapped up controls which genes are ‘read’ by the rest of the cell, and how this reading should be done. For example, base pairs that wind up on the outside of the nucleosome are expressed as proteins and influence the cell’s characteristics, while the ones folded away into the inside aren’t and don’t. This explains why different cells have the same DNA but different functions, but we’re still left with one big question: what determines how the sequence is folded? This is where DNA’s second sequence steps in.

A team from Leiden University in the Netherlands has modelled the process on a genome-wide scale, showing how these mechanical cues are coded in our DNA.

“The mechanics of the DNA structure can change, resulting in different packaging and levels of DNA accessibility,” they explain, “and therefore differing frequency of production of that protein.”

Again, many biologists already theorized this, but confirmation of the process and even more – a model of how it works – can greatly improve our understanding of DNA and how it affects our lives. Furthermore, it may help geneticists figure out how to manipulate these folds, eliminating or fixing genes which cause diseases.

Journal Reference: Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach. http://dx.doi.org/10.1371/journal.pone.0156905

share Share

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.