homehome Home chatchat Notifications


Crops farmed by leafcutter ants show signs of domestication: Leafcutter ants became farmers 50 million years before humans

Leafcutter ants in South America grow fungus as crops, this has been known for quite a while. But their crops show clear signs of domestication, which means that when it comes to farming, the ants might have beaten us by some 50 million years. Ant farmers When people started growing crops, they unwittingly made changes […]

Mihai Andrei
September 15, 2015 @ 4:18 am

share Share

Leafcutter ants in South America grow fungus as crops, this has been known for quite a while. But their crops show clear signs of domestication, which means that when it comes to farming, the ants might have beaten us by some 50 million years.

Ant farmers

Atta cephalotes tending to their garden. Image credits: Alexander Wild.

When people started growing crops, they unwittingly made changes to the plants’ genome. For example, wheat, bananas, tobacco and strawberries are all polyploid – more than two paired (homologous) sets of chromosomes.  Now, Danish researchers from Copenhagen have found that leafcutter ants crops exhibit similar traits. While natural fungus and the one grown by less specialized ants consistently has two copies of each set of chromosomes, leafcutter crops are ployploid, having between five and seven copies. This is a major indication that a plant (or in this case, a fungus) is becoming domesticated.

“Polyploidisation is the fastest way to make a domesticated crop,” says Rachel Meyer from New York University. It makes it larger and more robust because it increases the number of copies of each gene, producing more gene products like growth hormones and immune proteins.

Early humans favored polyploid plants for their productivity and increased yield, and the same is probably happening with the ants.

“About 50 million years ago, fungus-growing ants gave up their lives as hunter-gatherers to become fungal farmers,” says Kooij. He thinks the leafcutters took it further by selecting the more productive, polyploid fungi and encouraging their growth.

 

There was another similarity between the ants and early human farmers: as agriculture developed, populations grew by several orders of magnitude. Unspecialized ants can have colonies of thousands or tens of thousands of workers, while leafcutter ant colonies number in the millions. These extremely successful insects basically dominate the rainforest, with a single colony having yields of up to 500 kilograms from their fungal crops.

“The results of our study provide yet another piece of the puzzle to explain how these ants have been so extremely successful,” says Kooij.

Image via Bilfinger.

Ants, fungus and bananas

Previously, the ant-fungus relationship was considered a type of symbiosis, but more and more research has hinted to the idea that the ants are actually growing the fungus, and this is not simply a biological relationship. Fungus-growing ants actively propagate, nurture and defend the fungus. When a queen starts a new colony, she actually takes a pellet of the fungus with her, starting a new garden at the new colony site. The relationship is so specialized that in most cases, the fungus doesn’t even grow outside the ant colonies, and there are no ant colonies without the fungus – it’s strikingly similar to human agriculture.

But there’s another side to it: polyploid species are often unable to reproduce sexually, which means that there is less risk for breeding with external species. This means that the crop is limited to asexual reproduction: this also means that plants like bananas for example have no seeds, which makes them tastier for us. It seems logical that the same is happening for ants.

“Humans have made edible bananas, bigger sugarcane and strawberries,” says Meyer. “And we’re currently making new polyploids for bigger kiwi fruit and seedless watermelon.”

So, as I was discussing with some friends, does this mean that ants are intelligent? This seems to suggest so.

Journal reference: Journal of Evolutionary Biology, DOI: 10.1111/jeb.12718

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.