homehome Home chatchat Notifications


Algae thrives on battery acid, borrows genes from its neighbors

Life finds a way – the red alga Galdieria sulphuraria gives a really good argument to support that statement. In the hot springs of Yellowstone Park, it uses photosynthesis to produce its necessary nutrients. But in dark, murky, toxic mineshafts in drainage that are about as acidic as battery acid, not only does it survives, […]

Mihai Andrei
March 8, 2013 @ 6:57 am

share Share

Life finds a way – the red alga Galdieria sulphuraria gives a really good argument to support that statement. In the hot springs of Yellowstone Park, it uses photosynthesis to produce its necessary nutrients. But in dark, murky, toxic mineshafts in drainage that are about as acidic as battery acid, not only does it survives, but it thrives on eating bacteria.

alga

How can a single celled algae evolve to support such different conditions? Gerald Schoenknecht of Oklahoma State University and Andreas Weber and Martin Lercher of Heinrich-Heine-Universit set out to answer that questions, and their answers were quite shocking.

They were part of a team that figured out how Galdieria‘s genome shows clear signs of borrowing genes from its neighbors. The genetic adaptations to such conditions was not inherited, but it was rather acquired from bacteria or archaebacteria. This makes Galdieria the first known organism with a nucleus (called a eukaryote) that has adapted to such extreme environments by borrowing genes.

The age of comparative genome sequencing began only slightly more than a decade ago, and revealed a new mechanism of evolution–horizontal gene transfer–that would not have been discovered any other way,” says Matt Kane, program director in the National Science Foundation’s (NSF) Division of Environmental Biology, which funded the research. This finding extends our understanding of the role that this mechanism plays in evolution to eukaryotic microorganisms.”

alga 2

For example, its extremely high heat tolerance stems from genes that exist in hundreds of copies in its genome, all descending from a single gene the alga copied millions of years ago from an archaebacterium.

“The results give us new insights into evolution,” Schoenknecht says. “Before this, there was not much indication that eukaryotes acquire genes from bacteria.”

Other “skills” the algae has (say resistance to salt, mercury and arsenic) were also swiped from bacteria.

“Why reinvent the wheel if you can copy it from your neighbor?” asks Lercher. It’s usually assumed that organisms with a nucleus cannot copy genes from different species–that’s why eukaryotes depend on sex to recombine their genomes. How has Galdieria managed to overcome this limitation? It’s an exciting question.”

But aside for the algae itself, the implications for biotechnology are huge! Just imagine, “stealing” the adaptation from your food, that definitely sounds like something you want to take a better look at.

“Galdieria has acquired genes with interesting properties from different organisms, integrated them into a functional network and developed unique properties and adaptations.”

share Share

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

Your Gum Is Shedding Microplastics into Your Saliva

One gram of chewing gum can release up to 600 microplastic particles into your body.

Octopus rides the world's fastest shark and nobody knows what's going on

A giant octopus rode a mako shark. No one knows why.

23andMe Just Filed for Bankruptcy and Your DNA Could Be Up for Grabs

A company once worth billions now faces a reckoning over the fate of your genetic data

Scientists Discover Cells That Defy Death and Form New Life After the Body Dies. Enter The "Third State"

Some cells reorganize into living 'bots' long after the organism perished.

World’s Oldest Person Had Cells 17 Years Younger Than Her Age. The Surprising Diet and Habits That Helped Her Live to 117

The supercentenarian’s gut health may hold the key to longevity.

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

New research reveals an extraordinary journey across the Pacific that defies what we thought was possible.