homehome Home chatchat Notifications


The only mammals that regenerate tissue: African mice

These little spiny African mice can do something no other mammal can: they completely regenerate damaged tissue, a feat once thought impossible. They may not look as impressive as Wolverine, but they held quite the surprise: Acomys kempi and Acomys percivali have skin so brittle and easily torn that one can only ask… why? What […]

Mihai Andrei
September 27, 2012 @ 5:28 am

share Share

These little spiny African mice can do something no other mammal can: they completely regenerate damaged tissue, a feat once thought impossible.

Looks bad, but don’t worry – this guy will heal just fine.

They may not look as impressive as Wolverine, but they held quite the surprise: Acomys kempi and Acomys percivali have skin so brittle and easily torn that one can only ask… why? What evolutionary joke was played on them? Well, the joke’s on their predators, actually: because the skin is so fragile, the mice can easily escape even successful attacks by simply tearing their skin, which heals afterwards.

Researchers report today in Nature that whereas normal laboratory mice (Mus musculus) grow scar tissue when their skin is removed, these African mice can regrow not only skin cells, but also hair follicles, skin, sweat glands, fur and even cartilage.

Regenerating cartilage – as common as this is in insects, reptiles and even amphibians, few even suspected this may be naturally possible in mammals. Of course, the next step is figuring out how they do it – understanding the genetic, hormonal and molecular mechanisms which make this spectacular regrowth possible. “It’s unlikely that these mice have evolved an entirely new method of regrowing tissue“, says Ashley Seifert, a developmental biologist at the University of Florida in Gainesville, leader of the study. She believes the same regrowth genes found in salamanders for example, are found in mammals as well, but they are turned off. Somehow, the mice have found a way to turn them back on. Of course, if this is possible, there’s a good chance they could be turned on in humans as well; just imagine, years from now on humans could naturally be able to regenerate tissue!

“By looking at the common genetic blueprints that exist across vertebrates, we hope to find the ones that we could activate in humans,” he says. “We just need to figure out how to dial the process in mammals back to do something the entire system already knows how to do.”

Perhaps one day you’ll thank this guy for regenerating your hand.

Jeremy Brockes, a researcher focused in limb regeneration in newts at University College London agrees this is a spectacular discovery, one which could be applied to humans someday.

The genomic resources are so powerful now that one could easily identify some aspect of regeneration in mice that could be helpful for human health,” he says.

Of course, the idea of humans regenerating whole limbs might seem far fetched, but considering the advances made in regenerative medicine only in this past decade, with lab-grown organs, stem cells, and other regenerated tissues, one starts to guess that turning on a salamander gene in humans is not science-fiction after all. The intertwining of different field of biology often leads to remarkable results.

“My initial conversations with a developmental biologist led me to chat with a mammalogist, eventually bringing me to field work in Africa with an ecologist, followed up by lab work with engineers, completed by molecular work,” he says. “Cross-talk among scientists can lead to really cool things.”, Seifert adds.

Scientific source: Seifert, A. W. et al. Nature 489, 561–565 (2012).

share Share

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

Sharks Aren’t Silent After All. This One Clicks Like a Castanet

This is the first evidence of sound production in a shark.

Your Gum Is Shedding Microplastics into Your Saliva

One gram of chewing gum can release up to 600 microplastic particles into your body.

Octopus rides the world's fastest shark and nobody knows what's going on

A giant octopus rode a mako shark. No one knows why.

23andMe Just Filed for Bankruptcy and Your DNA Could Be Up for Grabs

A company once worth billions now faces a reckoning over the fate of your genetic data