homehome Home chatchat Notifications


Second gene-silencing mechanism found, could lead to viable clones and safer in vitro

It's gotta be pretty important if it has a back-up system in place.

Alexandru Micu
July 19, 2017 @ 10:04 pm

share Share

A new cellular gene-silencing mechanism has been identified and could hold the key to safer in vitro fertilization, even the cloning of animals.

Gene cutting.

Image credits Arek Socha.

We each inherit two working copies of most genes from our parents, one from the maternal and one from the paternal side. But for a tiny minority of genes, or allele, only one copy can be allowed to function while the other remains inactivated from inception until the moment we die. This mechanism is called imprinting, and faulty imprinting can cause a host of genetic syndromes, such as Angelman’s (too much imprinting, so both genes are inactivated) or Beckwith-Wiedemann syndrome (too little imprinting, so both alleles are expressed).

Imprinting is why a lion and a tiger can have two types of offspring. If the female is lion, the couple will sire a tigon, which generally-speaking are smaller than both the parent species. But if the female is a tiger, they will sire a liger — which is much larger in general than any of the initial two. The differences in size and appearance come down, in part, to imprinting differences in maternal- and paternal-inherited genes.Usually, imprinting takes place naturally during inception, through a process called methylation — basically, methyl groups are added to a gene to shut it down.

But in artificial fertilization methods, such as in vitro for humans or straight-up cloning of mammals, imprinting can sometimes be faulty or bypassed altogether. However, a new discovery from the Howard Hughes Medical Institute might hold the key to reversing faulty imprinting. The team, whose correspondent author is Investigator Yi Zhang, found another mechanism cells can use to silence imprinted genes — by attaching specially-modified proteins called histones to the problematic alleles.

These genes are histone-y

The researchers succeeded in shutting down the activity of some imprinted genes in mice by modifying a histone known as H3K27 to carry methyl groups. They also identified 76 genes in mice that likely belong to the imprinted gene group, which is a pretty big number: until now, roughly 150 imprinted genes have been found in mice and roughly half that in humans.

There’s still a lot of work to be done on imprinting, Zhang says, but finding a second mechanism underpinning it just goes to show how important imprinting is from evolution’s point of view. It’s possible that the one the team describes in their paper evolved as a back-up to catch any improperly-imprinted alleles before they can cause any damage.

Imprinting disorders seem to develop more often in children conceived in vitro or through similar methods, the paper notes. It’s still unclear as to why. It could be that imprinting problems are inherently tied to infertility itself, or it may well be that these procedures somehow interfere with imprinting and we just don’t know it yet. But Zhao thinks their findings could give hope to couples who’re having difficulties conceiving and are pursuing assisted reproductive technologies that their child will be healthy.

Furthermore, improper imprinting could be why we’ve had so little success in cloning a healthy animal. Usually, the process requires that imprinting marks be scrapped in the precursor cells and then re-added in the eggs and sperm. Previous research lends weight to the idea that even minor bugs in this erase-rewrite phase can have dramatic effects on the development of clone embryos.

“The new imprinting mechanism may eventually offer a target for treating such developmental failures,” Zhang concludes.

The paper “Maternal H3K27me3 controls DNA methylation-independent imprinting” has been published in the journal Nature.

share Share

A 97-Year-Old Tortoise Just Became a First-Time Mom at the Philadelphia Zoo

Mommy has been living at the Philadelphia Zoo for 90 years, and waited until old age to experience motherhood.

Earth Might Run Out of Room for Satellites by 2100 Because of Greenhouse Gases

Satellite highways may break down due to greenhouse gases in the uppermost layers of the atmosphere.

Federal Workers Say They’re Being Watched by AI for Saying Anything Bad about Trump or Musk

AI monitors federal workers for ‘anti-Trump’ and 'anti-Musk' language as oversight erodes, insiders say.

The World’s Smallest Flying Robot Is Here. It Weighs Less Than a Raindrop and It’s Powered by Invisible Forces

The world’s lightest untethered flying robot takes to the air.

Pulse Oximeters Seem To Be Misreading Oxygen in Darker Skin

Bias in pulse oximeters isn't just a clinical glitch — it’s a systemic issue that puts patients with darker skin at risk.

Birds Are Changing Color in Cities. Here’s Why

Birds in cities are getting flashier — literally.

This Is How Autocrats Quietly Take Over and What You Can Do About It

We can't rely on just the courts. Reversing political backsliding needs the people's voices.

Women With Endometriosis Say Cutting These 4 Foods Eased Their Pain

A new study reveals that eliminating foods like alcohol, gluten, and dairy may offer real relief where medicine often falls short.

Economists forecast the full impact of Trump's 'Liberation Day' tariffs. The US is hit the hardest

Modelling of how Trump’s tariffs will hit global trade suggests the US will be the biggest loser – while a few nations may emerge as surprising winners.

“Thirstwaves” Are Growing More Common Across the United States

Like heat waves, these periods of high atmospheric demand for water can damage crops and ecosystems and increase pressure on water resources. New research shows they’re becoming more severe.