homehome Home chatchat Notifications


Sew face masks out of cotton and chiffon or natural silk to protect against COVID-19

Material matters.

Alexandru Micu
April 27, 2020 @ 9:50 pm

share Share

A new study from the University of Chicago reports that a multi-layered mask made from cotton fabric and chiffon or natural silk can be just as effective as N95 masks against the coronavirus.

Image credits Alexandra Gerea.

There just aren’t enough masks to go around, and those that we do have should be earmarked for healthcare workers. How, then, are we to keep ourselves safe in the great (and pandemic) outdoors? Well, according to one new study, we should do like our forefathers before us — and sew!

The authors analyzed the filtration properties of fabrics against aerosols (the main method of transmission for the SARS-CoV-2 coronavirus) and reported on the types of materials to use in order to create an effective mask.

Cotton and chiffon

Although the U.S. Centers for Disease Control and Prevention recommends the use of face masks whenever going outside, the reality on the ground is that such equipment is often in short supply. Surgical masks are somewhat easier to come by, but they are much less effective than filtering masks such as the N95 model (although they’re still useful).

The real problem is that every mask we use is one that’s no longer available for the healthcare sector, and the medical personnel fighting to help the infected against the disease need such masks to be able to continue doing their jobs. So people have started making their own, which is awesome. Researchers are now pitching in, too, and are informing us of the best way, and the best materials, to use when making our masks.

Coronavirus is spread through saliva droplets that form aerosols when we breathe, talk, or cough. The heavier droplets fall to the floor, but the lighter ones remain in suspension around us and can travel (and infect) up to 4 meters away.

The team, led by Molecular Engineering Professor Supratik Guha, used an aerosol mixing chamber to produce particles ranging in diameter from 10 nm to 6 μm in diameter, roughly the same interval of the size seen in coronavirus-carrying aerosols. A fan was used to force them through various textile samples (the fan was set to generate airflow comparable to that of a person’s respiration at rest), and the team compared particle levels in the air before and after passing through the material. The study was carried out at the U.S. Department of Energy’s Center for Nanoscale Materials user facility at Argonne National Laboratory with funding from the U.S. Department of Defense’s Vannevar Bush Fellowship.

Their results show that one layer of “tightly-woven” cotton combined with two layers of polyester-spandex chiffon (a type of sheer fabric most commonly seen in evening gowns — can filter out between 80% to 99% of all aerosol particles in a sample (depending on their size). Such performance, they add, is close to that of an N95 respirator mask.

The chiffon can be swapped for natural silk or flannel without losing filtering ability, or the whole thing can be replaced with a cotton quilt with cotton-polyester batting. The combination of two materials is important, however. The team explains that the cotton creates a physical barrier to incoming aerosol particles, while materials such as chiffon and natural silk can become charged, and serve as an electrostatic barrier.

Another thing to keep in mind is that it’s essential for such masks to be perfectly fitted. Even the slightest gap between the mask’s edges and the user’s skin can reduce their filtering efficiency by 60%.

The paper “Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks” has been published in the journal ACS Nano.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.