homehome Home chatchat Notifications


The human egg locks like Fort Knox after it's fertilized. Scientists finally find out how

This research could lead to new non-hormonal contraceptives and other insights into female fertility.

Tibi Puiu
March 19, 2024 @ 12:36 am

share Share

Illustration of egg coat protein preventing entry to other sperm after it's fertilized
Illustration of egg coat protein preventing entry to other sperm after it’s fertilized. Credit: Joana C. Carvalho/Karolinska Institutet

During a single ejaculation, millions of sperm embark on their arduous journey to the egg. On the way, numerous challenges await. These include an acidic environment in the vagina, the cervix’s mucus which can act as a barrier or filter, the many wrong turns within the uterus, and the final challenge of penetrating the egg itself which is encased in a protective layer called the zona pellucida.

Only a few hundred lucky sperm actually make it close to the egg. But, in the end, there is only one winner.

Researchers at the Karolinska Institutet in Sweden have now made a breakthrough in understanding how fertilization in mammals is precisely regulated. They found that immediately after the egg is fertilized by a sperm, the surrounding egg coat tightens, acting as a hard barrier that stops additional sperm. This critical process, detailed for the first time, prevents a potentially lethal state for the embryo — polyspermy. In this state, multiple sperm cells fuse with a single egg and can make it unviable.

The mysterious egg coat

The team employed advanced techniques such as X-ray crystallography and cryo-electron microscopy (cryo-EM) to decipher the 3D structure of egg coat proteins. They also used the Google’s AI program AlphaFold to predict the structure of the human egg coat, combining this with functional studies in mice to explore how mutations in the ZP2 protein affect fertility.

The study unveiled the structure and crucial function of a protein called ZP2 within the egg coat. It’s ZP2’s transformation post-fertilization that creates an impenetrable barrier against additional sperm, ensuring that only one sperm can fertilize the egg. This discovery, led by Professor Luca Jovine of the Karolinska Institutet, marks a significant step forward in reproductive biology.

“It was known that ZP2 is cleaved after the first sperm has entered the egg, and we explain how this event makes the egg coat harder and impermeable to other sperm,” says Luca Jovine, Professor at the Department of Biosciences and Nutrition, Karolinska Institutet, who led the study.

Alterations in the protective layer surrounding the egg after fertilization play a vital role in female fertility. This coat safeguards the embryo during its early development until it securely attaches to the womb. This insight could lead to the development of new contraceptive methods that do not rely on hormones, but instead target the formation of this protective egg layer. This would also explain some instances of female infertility involving egg coating.

“Mutations in the genes encoding egg coat proteins can cause female infertility, and more and more such mutations are being discovered,” explains Luca Jovine. “We hope that our study will contribute to the diagnosis of female infertility and, possibly, the prevention of unwanted pregnancies.”

In an unexpected twist, the team found that a segment of the ZP2 protein, previously believed to serve as a receptor for sperm, is not essential for sperm attachment. This begs the question: what then is the true sperm receptor on the egg coat? The researchers in Sweden plan on investigating this in the future.

The findings appeared in the journal Cell.

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.