homehome Home chatchat Notifications


A new molecular drug that mimics exercise might help Diabetes patients

Researchers at University of Southampton, England report finding an alternative pathway to activate a key enzyme involved in cellular glucose uptake, mimicking the effects of exercise (some of it). In type two diabetes the enzyme in question is "lazy" and drugs are usually used to activate it, allowing glucose to enter the cell and produce energy (adenosine triphosphate or ATP for short). It's not clear yet whether the new molecular compound, for now simply called 'compound 14', is better than current treatments.

Tibi Puiu
August 19, 2015 @ 10:11 am

share Share

Researchers at University of Southampton, England report finding an alternative pathway to activate a key enzyme involved in cellular glucose uptake, mimicking the effects of exercise (some of it). In type two diabetes the enzyme in question is “lazy” and drugs are usually used to activate it, allowing glucose to enter the cell and produce energy (adenosine triphosphate or ATP for short). It’s not clear yet whether the new molecular compound, for now simply called ‘compound 14’, is better than current treatments.

obesity diabetes

Image: Journal of Pioneering Medical Science

Diabetes is diagnosed when a person has too much glucose (sugar) in the blood. This happens because the pancreas cannot make enough insulin. Insulin is produced in the pancreas and has two jobs in the body – the first is to transport glucose from the blood supply into fat and muscle cells, where it can be used for energy. The second is to switch off the liver once the level of glucose in the blood is high enough. This is the case with Type 1 diabetes. In Type 2 diabetes – which is usually caused by poor dieting and obesity – the main problem is the cells become insensitive to the insulin. By not responding, the insulin fails to transport the vital glucose to the cell.

Main differences between Type I and Type II diabetes. Image: BBC

Main differences between Type I and Type II diabetes. Image: BBC

To combat this, drugs are prescribed which activate an enzyme called AMP-activated protein kinase (AMPK). The enzyme helps reset the body by increasing AMP (Adenosine diphosphate and monophosphate, respectively) production. The most commonly used drug that does this is metformin. While other drug have various side effects, including weight gain which is a big ‘no-no’ for diabetes patients, meformin is quite safe. It’s only side effect is that it produces some gastrointestinal irritation. Moreover, it promotes weight gain and has been likened to an “exercise mimicking” drug. That’s because exercise also promotes increased AMPK activation, hence the similar effects.

Compound 14 is interesting since it seems very similar to meformin, in effects at least, only it uses a different mechanism.

AMPK activation by Compound 14 (Cpd14). Image from Asby et al.

AMPK activation by Compound 14 (Cpd14). Image from Asby et al.

In the present research, two groups of mice – one of normal weight, the other obese – were administered compound 14 for a week. The normal mice experienced no major change in their bodily functions: their weight remained constant as sugar levels in the blood. The obese mice, however, lost 5% of their body weight and blood sugar dropped. This is very similar to meformin. However, compound 14 works by inhibiting a different enzyme called ATIC. In turn, this causes the build up of a molecule called ZMP (an analogue of AMP). This increase in ZMP seems to create similar effects in the body as an increase in AMP.

These findings are still preliminary, though. Side effects are virtually unknown (the subtle ones at least – you can’t ask a mouse how it feels) and it isn’t clear if it works for all overweight mice. For now, meformin is here to stay.

While meformin and compound 14 seem to help with Type 2 diabetes, they can never beat another ‘drug’: real exercise.

Findings appeared in Sciencescape.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.