homehome Home chatchat Notifications


Drag-and-drop and synthetic DNA self-assembly makes drug design easier

Researchers at  Parabon NanoLabs have developed an unique tool that allows scientists to use an intuitive drag-and-drop computer interface, much like in any other 3-D CAD software like Catia or AutoCAD, together with  DNA self-assembly techniques, to develop and test new drugs much faster. Called the  Parabon Essemblix Drug Development Platform, the tool can be used to design molecular pieces […]

Tibi Puiu
December 6, 2012 @ 12:20 pm

share Share

Researchers at  Parabon NanoLabs have developed an unique tool that allows scientists to use an intuitive drag-and-drop computer interface, much like in any other 3-D CAD software like Catia or AutoCAD, together with  DNA self-assembly techniques, to develop and test new drugs much faster.

A collection of pharmaceutical molecules is shown after self-assembly. (c) Parabon NanoLabs

A collection of pharmaceutical molecules is shown after self-assembly. (c) Parabon NanoLabs

Called the  Parabon Essemblix Drug Development Platform, the tool can be used to design molecular pieces with specific, functional components. Some molecules are currently used to identify cancer cells, others are capable of latching to cancer cells, while others kill them. Combining them renders mixed effects. After the design is saved, a cloud supercomputing platform that uses proprietary algorithms to search for specific sets of DNA sequences that can self-assemble those components. With a proper sequence in place that works, scientists chemically synthesize trillions of identical copies of the designed molecules. The development phase of the drug is now cut to weeks even days instead of months or even years compared to conventional trial and error.

“We can now ‘print,’ molecule by molecule, exactly the compound that we want,” says Steven Armentrout, the principal investigator on the NSF grants and co-developer of Parabon’s technology.

“What differentiates our nanotechnology from others is our ability to rapidly, and precisely, specify the placement of every atom in a compound that we design.”

The new Parabon technology offers precise control over size, charge and the relative placement of components. In vivo experiments, funded by the NSF SBIR award, validated the approach, and Parabon filed a provisional patent for its methods and compounds on May 4, 2011. The final applicationwas published in 2012.

Parabon Essemblix process (credit: Parabon NanoLabs)

Parabon Essemblix process – click for zoom (credit: Parabon NanoLabs)

When designing a therapeutic compound, we combine knowledge of the cell receptors we are targeting or biological pathways we are trying to affect with an understanding of the linking chemistry that defines what is possible to assemble,” says Hong Zhong, senior research scientist at Parabon and a collaborator on the grants. “It’s a deliberate and methodical engineering process, which is quite different from most other drug development approaches in use today.”

via National Science Foundation.

share Share

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.