homehome Home chatchat Notifications


DNA nanobots deliver drugs in living cockroaches - it's a computer, inside a cockroach

The future is here. Nano-sized entities made of DNA that are able to perform the same kind of logic operations as a silicon-based computer have been introduced into a living animal. It’s every Science Fiction fan’s dream come true. The tiny DNA computers are called origami robots, because they work by folding and unfolding strands of DNA; […]

Mihai Andrei
April 9, 2014 @ 7:52 am

share Share

The future is here. Nano-sized entities made of DNA that are able to perform the same kind of logic operations as a silicon-based computer have been introduced into a living animal.

Artistic depiction of nanobots. Via ProTV.

It’s every Science Fiction fan’s dream come true. The tiny DNA computers are called origami robots, because they work by folding and unfolding strands of DNA; they travel around the insect’s body and interact with each other, as well as the insect’s cells. When they unfold just like a complex origami, they dispense the drugs which they carry.

“DNA nanorobots could potentially carry out complex programs that could one day be used to diagnose or treat diseases with unprecedented sophistication,” says Daniel Levner, a bioengineer at the Wyss Institute at Harvard University.

DNA computing sounds like science fiction, but it’s not exactly a novelty – it’s been researched and developed for over a decade now. DNA computing is a form of computing which uses DNA, biochemistry and molecular biology just like you would use a traditional silicon microprocessor. DNA also has a remarkable property which makes it even more useful for this kind of technique, as it unravels into two complementary strands when it meets a certain protein, making it ideal for delivering substances inside a body. When the molecule opens up, it “delivers the package”.

DNA computing nanobots with the same computing power as an 80s computer injected into cockroaches. Simply mindblowing! Image credits: Daly and Newton/Getty Images.

Researchers injected different nanobots into cockroaches, labeling them with different fluorescent markers so they can follow and analyze how robot combinations affect where substances are delivered. The accuracy of this technique is similar to that of a computer system.

“This is the first time that biological therapy has been able to match how a computer processor works,” says co-author Ido Bachelet of the Institute of Nanotechnology and Advanced Materials at Bar Ilan University. Unlike electronic devices, which are suitable for our watches, our cars or phones, we can use these robots in life domains, like a living cockroach,” says Ángel Goñi Moreno of the National Center for Biotechnology in Madrid, Spain. “This opens the door for environmental or health applications.”

DNA has already been used for storing large amounts of information and circuits for amplifying chemical signals, but when you compare these achievements with the origami robots, they are not that impressive. The number of the nanobots which were successfully used and their impressive accuracy are extremely promising.

 “The higher the number of robots present, the more complex the decisions and actions that can be achieved. If you reach a certain threshold of capability, you can perform any kind of computation. In this case, we have gone past that threshold,” he says.

The team believes they will soon be able to scale up the computing power up to that of an 8-bit computer, equivalent to a computer from the 80s – it may not seem that impressive at a first glance, but remember, this is a computer made from DNA, which serves a very unique purpose, so it’s actually more than enough.

The obvious benefits would be cancer treatments, because these must be cell-specific and one of the main problems with current treatments is the lack of cell-targeting. However, the main problem here is that any such treatment has to somehow overcome the immune response delivered by the host. Basically, your immune system will sense the nanobots as a foreign body, and try to fight them. But scientists believe they can overcome even that problem – Bachelet is confident that the team can enhance the robots’ stability so that they can survive in mammals.

“There is no reason why preliminary trials on humans can’t start within five years,” he says.

 

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.