homehome Home chatchat Notifications


Cicada wing destroys bacteria solely through its physical structure

The veined wing of the clanger cicada kills bacteria is able to destroy bacteria by its structure alone – one of the first structures ever found that can do this. The clanger cicada is an insects that looks like something between a fly and a locust; its wings are covered with a vast hexagonal array […]

Mihai Andrei
March 5, 2013 @ 8:39 am

share Share

The veined wing of the clanger cicada kills bacteria is able to destroy bacteria by its structure alone – one of the first structures ever found that can do this.

The clanger cicada is an insects that looks like something between a fly and a locust; its wings are covered with a vast hexagonal array of ‘nanopillars’ – basically blunted spikes with sizes comparable to that of bacteria. What happens is that when a bacteria settles on this surface, its cellular membrane sticks to the surface of the nanopillars and stretches into the crevices between them, where it experiences the most strain. When the stretch is powerful enough, the membrane ruptures.

Lead study author Elena Ivanova of Australia’s Swinburne University of Technology in Hawthorne, Victoria worked with a team of biophysicists to come up with an advanced nanoscale model of how this happens. She explains that the rupture is much like “the stretching of an elastic sheet of some kind, such as a latex glove. If you take hold of a piece of latex in both hands and slowly stretch it, it will become thinner at the center, [and] will begin to tear”.

cicada

To test their model, the team irradiated bacteria with microwaves to generate cells that had different levels of membrane rigidity. If the model was correct, then the more rigid bacteria would be less likely to rupture between the nanopillars. The results validated their model, but also showed that not all bacteria are destroyed – only those with soft enough membranes.

Further study of the cicada’s wing is needed before its physical-defence properties can be mimicked in man-made materials, but doctors are already rubbing their hands, because if this can be replicated, it could be very useful (say) in hospitals and rooms which you want to keep as bacteria-free as possible.

“This would provide a passive bacteria-killing surface,” she says, adding that it “does not require active agents like detergents, which are often environmentally harmful”.

share Share

Scientists Create a ‘Smart Sponge’ That Knows When to Heal and When to Fight Inflammation

This hydrogel could help millions of people lead a better life.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

Low testosterone isn't killing your libido. Sugar is

Small increases in blood sugar can affect sperm and sex, even without diabetes

There might be an anti-aging secret hiding in magic mushrooms

Psilocybin extends cell life, and preserves aging DNA structures.

This is How Exercise Supercharges the Immune System Against Cancer

Exercise reshapes gut bacteria to supercharge immune response against tumors.

Can Dogs Really Smell Parkinson’s? These Two Good Boys Say Yes

Our best friend is even more awesome than we thought.

This Bionic Knee Plugs Into Your Bones and Nerves, and Feels Just Like A Real Body Part

No straps, no sockets: MIT team created a true bionic knee and successfully tested it on humans.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

New Blood Test Reveals How Fast Your Organs Are Aging. Your Brain’s Biological Age May Hold the Key to How Long You Live

People with "older" brains had a much higher risk of dying compared to "younger" brains.