homehome Home chatchat Notifications


Newly developed nanomaterial looks like an anti-bacterial spike pit -- but your cells can comfortably live on it

Named black silicon, the material literally stabs bacteria to death.

Alexandru Micu
August 10, 2016 @ 2:30 pm

share Share

Black silicon, a novel nanosurface reminiscent of a bed of nails, is the worst place to find yourself in if you’re a bacteria — but one of the best if you’re a respectable, hard working eukaryote cell. The surface has been shown to discourage bacterial growth while leaving our cells unharmed, a property in high demand as more patients require catheters and implants.

Black silicon raises a pointy answer to an old question. A lot of pointy answers, actually.
Image credits Sedao/Wikimedia

Once an implant is grafted into the human body, it starts a feeding frenzy of human and bacterial cells, each trying to colonize as much of the surface as possible. Needless to say, you don’t want bacteria to colonize anything, ever, in your body (with a few exceptions.) Thus, surfaces that stack the playing field in favor of our cells would be ideal as coatings for such objects.

An international team of researchers has developed a nanomaterial that does just that. Not ones for subtlety, they created the nano-equivalent of a spike pit, making it on forever. Called black silicon, the surface’s nanotopology physically rips apart bacteria while leaving human cells alone.

The team drew inspiration from previous research on dragonfly wings, which are built from bactericidal nanostructures. Black silicone has similar bactericidal properties — zoom in enough, and it’s remarkably similar to a bed of nails. Because bacteria are smaller than our (eukaryotic) cells, the pressure these points exert on their membranes should break them apart while leaving larger cells (which can distribute their weight on more points) unharmed. That’s the theory at least.

To test their material, the team coated surfaces with either black (bSi) or regular silicon (Si,) and infected them with either Pseudomonas aeruginosa or Staphylococcus aureus, both human pathogens. They then added cells harvested from monkey kidneys (called COS-7 cells) to see if the black silicon has any effect on the pathogens.

Image credits Pham et al./Mater. Interfaces, 2016.

Image credits Pham et al./Appl. Mater. Interfaces, 2016.

The monkey cells (colored in green) had a lot of trouble with the bacteria in the absence of black silicone — P. aeruginsoa completely prevented any cells from growing on the regular silicone surface, while S. aureus slowed their growth rate significantly. But on the black silicon surface, the bacteria were killed and COS-7 cells developed nicely. This proves that the surface is able to kill both Gram-positive (thick cell wall, represented by S. aureus) and Gram-negative (two outer membranes, represented by P. aeruginosa) bacteria. Maybe it can even help with drug-immune bacteria.

It also doesn’t seem to cause any problems for eukaryotic cells. Microscopy observations showed that the cells simply deform their membranes around the tiny spikes, harmlessly engulfing them. When injected into mice, black silicon didn’t trigger any adverse effects such as an inflammatory response.

Image credits Pham et al./Appl. Mater. Interfaces, 2016.

Image credits Pham et al./Appl. Mater. Interfaces, 2016.

The authors say that this is the first time anyone has proven that eukaryotic cells can grow on a surface previously contaminated with deadly bacteria. They’re also hoping to have their new material read for commercial purposes soon.

And I for one am looking forward to it, because there’s something really metal about impaling bacteria to death.

The full paper, “‘Race for the surface’: eukaryotic cells can win,” has been published in the journal Applied Material Interfaces.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.