homehome Home chatchat Notifications


New biocompatible, self-healing gel is perfect replacement for cartilages

A team of experts in mechanics, materials, medicine and tissue engineering have managed to create a self replicating gel which can stretch about 21 times its length. The water-based tough gel is also self-healing and biocompatible, which means it could be perfect for people with cartilage injuries. When 1+1 isn’t 2 The new hydrogel (names […]

Mihai Andrei
September 6, 2012 @ 12:05 pm

share Share

A team of experts in mechanics, materials, medicine and tissue engineering have managed to create a self replicating gel which can stretch about 21 times its length. The water-based tough gel is also self-healing and biocompatible, which means it could be perfect for people with cartilage injuries.

When 1+1 isn’t 2

The new hydrogel (names this way because water is its main ingredient) is a hybrid between two other gels, two rather common polymers, soft on their own, but which become much tougher when put together.

“Conventional hydrogels are very weak and brittle — imagine a spoon breaking through jelly,” explains lead author Jeong-Yun Sun, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS). “But because they are water-based and biocompatible, people would like to use them for some very challenging applications like artificial cartilage or spinal disks. For a gel to work in those settings, it has to be able to stretch and expand under compression and tension without breaking.”

For example, one of the polymers, alginate, can only stretch 1.2 times its length before it breaks, but combined in the 8:1 ratio with polyacrylamide (known for its use in soft lenses), boom! They form a complex network of chains that crosslink between them and reinforce one another.

Heal me, stretch me

The alginate part of the gel consists of polymer chains that form weak ionic bonds with one another, practically trapping calcium ions into the matrix, while the other, polyacrylamide part forms a grid like structure of covalent bonds. As the gel stretches beyond its limit, calcium ions are eliminated, and the gel is ‘unzipped’, as researchers put it; as a result, the gel expands slightly, but the polymers themselves remain intact. Researchers note that even with a huge crack, the hybrid gel can still stretch some 17 times beyond its initial length.

But what’s even more important, the hydrogel can maintain its toughness and elasticity after multiple stretches and fractures, and the ionic bonds between the alginate and the calcium can “re-zip”, especially after rising the temperature.

“The unusually high stretchability and toughness of this gel, along with recovery, are exciting,” says Suo. “Now that we’ve demonstrated that this is possible, we can use it as a model system for studying the mechanics of hydrogels further, and explore various applications. It’s very promising,” Suo adds.

Beyond being used as a replacement for cartilages, scientists explain it could also play a role in robotics, optics, and even artificial muscle.

share Share

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.