homehome Home chatchat Notifications


Scientists perform billion-atom simulation of a human gene

The model could solve mysteries about DNA and lead to novel medicines.

Tibi Puiu
April 24, 2019 @ 3:29 pm

share Share

The atomic model of an entire human gene. Credit: Los Alamos National Laboratory.

The atomic model of an entire human gene. Credit: Los Alamos National Laboratory.

Researchers have simulated a billion atoms which make up an entire human gene for a split-second. This is the largest simulation of human DNA and an important milestone towards the ultimate goal of digitally reproducing the human genome. 

“It is important to understand DNA at this level of detail because we want to understand precisely how genes turn on and off,” said Karissa Sanbonmatsu, a structural biologist at Los Alamos. “Knowing how this happens could unlock the secrets to how many diseases occur.”

Sanbonmatsu and colleagues performed their study on the Los Alamos’ Trinity supercomputer, the sixth fastest in the world. But even for this behemoth, simulating the intricate complexities of DNA was a huge challenge that required all of its computing resources. The model is quite slow too, simulating just one nanosecond of molecular activity per day.

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. This incredible molecule contains all the instructions an organism needs to develop, live, and reproduce. Its structure is so neatly compacted and precise that you could string together all the DNA in a human body to wrap around the earth 2.5 million times.

The reason why the blueprint for life is so compact has to do with the way the string-like molecule is wound up in a network of tiny spools. The various ways in which these spools wind and unwind turn genes on and off. In other words, when the DNA is more compacted, genes are turned off and when DNA expands, genes are turned on.

Researchers do not yet fully understand how all of this process pans out, which is why they’ve developed this atomistic model. Solving this mystery could one day lead to novel gene therapies and medical applications.

But before that happens, we need much faster computers. Modeling billions and billions of atoms all moving at the same time requires phenomenal resources. And, if we want to model an entire chromosome (or even the human genome), scientists will have to wait for the next generation of supercomputers, such as exascale computers, which will be many times faster than today’s machines.

Scientific reference: Jaewoon Jung et al. Scaling molecular dynamics beyond 100,000 processor cores for large‐scale biophysical simulations, Journal of Computational Chemistry (2019). DOI: 10.1002/jcc.25840.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.