homehome Home chatchat Notifications


Researchers create automatic method to detect air pollution hotspots

It's an algorithm that can help tackle air pollution from existing satellite data.

Fermin Koop
April 20, 2021 @ 6:26 pm

share Share

Imagine there could be a way to autonomously identify hotspots of heavy air pollution, city block by city block. Governments could then detect problem areas and develop targeted measures and achieve optimal results. Researchers at Duke University have developed just that: a method that uses machine learning, satellite images, and weather data to track localized PM2.5 pollution.

Image credit: Flickr / UN

Air pollution is by far one of the most severe environmental problems, on all scales from local to global. Exposure to fine particulate matter (also known as PM2.5) has wide-ranging adverse health effects on human health, with adverse effects on cardiovascular, cardiopulmonary, and respiratory wellness, to list just a few problems. It can lead to higher risks of mortality and loss of life expectancy.

Satellite data have been most commonly used for mapping PM2.5 at high resolution. With the help of the recent rapid advancements in satellite sensors and rise in computing power, a handful of satellite-based methods have succeeded in estimating ambient PM2.5 concentrations at sub-km levels with low uncertainties. But it’s not all rosy.

“Setting up sensor networks is time-consuming and costly, and the only thing that driving a sensor around really tells you is that roads are big sources of pollutants. Being able to find local hotspots of air pollution using satellite images is hugely advantageous, Mike Bergin, professor at Duke and co-author of the study, said in a statement. 

Bergin and the team of researchers wanted to further look into PM2.5 pollution but they could only access data on a county-by-county level — which really isn’t enough resolution. While valuable, this information doesn’t allow to look into a specific neighborhood close to a coal-fired plant, for example. Ground stations are expensive to build and maintain, so most cities only have a handful of them. So instead, Bergin and colleagues looked for an alternative.

In previous studies, the researchers showed that satellite imagery, weather data, and machine learning could provide PM2.5 measurements on a small scale. Now, the team has improved their methods and taught the algorithm to automatically find hotspots and cool spots of air pollution with a resolution of 300 meters. This is the average length of a New York City block, and sufficient to draw clearer conclusions about where the pollution is actually coming from. 

The new development was made possible thanks to a technique called residual learning. The algorithm created by the researchers first uses weather data to estimate the levels of PM2.5. Then it measures the difference between these estimates and the actual levels of PM2.5 and teaches itself to use satellite images to make its predictions better.

“Hotspots are notoriously difficult to find in maps of PM levels because some days the air is just really bad across the entire city, and it is really difficult to tell if there are true differences between them or if there’s just a problem with the image contrast,” David Carlson, co- author, said in a statement. “It’s a big advantage to be able to find a specific neighborhood that tends to stay higher or lower than everywhere else.”

While the methods it teaches itself can’t transfer from city to city, the algorithm should easily teach itself new methods in different locations, the researchers argued. Cities might evolve over time in both weather and pollution patterns but the algorithm shouldn’t have any trouble evolving with them. Plus, if air quality sensors improve as expected, the algorithm should also get better with time.

The study was published in the journal Remote Sensing. 

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.