homehome Home chatchat Notifications


We’re one step closer to fully-functioning artificial blood vessels

Mice first, then humans.

Alexandru Micu
October 22, 2019 @ 7:38 pm

share Share

A new study describes how researchers 3D-printed fully-functional blood vessels, and how they can be implanted into living hosts.

Blood vessel with a reduced cross-sectional area.
Image via Wikimedia.

The blood vessels were printed from a bioink containing human smooth muscle cells (harvested from an aorta) and endothelial (lining) cells from an umbilical vein. They have the same dual-layer architecture of natural blood vessels and outperform existing engineered tissues, the team explains.

The findings bring us closer to 3D-printed artificial blood vessels that can be used as grafts in clinical use.

Bloody constructs

“The artificial blood vessel is an essential tool to save patients suffering from cardiovascular disease,” said lead author Ge Gao. “There are products in clinical use made from polymers, but they don’t have living cells and vascular functions.”

“We wanted to tissue-engineer a living, functional blood vessel graft.”

The researchers explain that the small-diameter blood vessels we’ve been able to construct so far were fragile things, and prone to blockages. The crux of the issue was that these vessels relied on a very simplified version of the extracellular matrix — the material between cells which keeps our bodies together — most usually in the form of collagen-based bioinks. A natural blood vessel, however, isn’t just collagen; it also boasts a wide range of biomolecules that support the growth and activity of vascular cells.

To address these issues, the team developed a bioink starting from native tissues that preserves this extracellular complexity. Its use allows for faster development of vascular tissues and results in blood vessels with better strength and anti-thrombosis (i.e. anti-clogging) function. After fabrication, the team matured the vessels in the lab to reach specific wall thickness, cellular alignment, burst pressure, tensile strength, and contraction ability — basically making the printed vessels mimic the functions of natural blood vessels.

Afterward, the printed blood vessels were grafted as abdominal aortas into six rats. Over the following six weeks, the rats’ fibroblasts (a type of cell in the extracellular matrix) formed a layer of connective tissue on the surface of the implants — which integrated the vessels into pre-existing living tissues.

The team says they plan to continue developing the process in order to make the blood vessels stronger, with the goal of making them similar to human coronary arteries in physical properties. They also want to perform a long-term evaluation of vascular grafts to see how they evolve as they integrate into the implanted environment.

The paper “Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing” has been published in the journal Applied Physics Reviews.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.