homehome Home chatchat Notifications


AI is better than doctors at predicting how long a patient has to live

Some information is just unreadable to humans.

Tibi Puiu
June 8, 2017 @ 9:13 pm

share Share

https://cdn.pixabay.com/photo/2017/01/18/15/07/temporal-distance-1990035_960_720.jpg

Credit: Pixabay.

Australian researchers developed an artificial intelligence tasked with predicting patient lifespans. The machine is surprisingly accurate at predicting which patient would die within five years. Its official accuracy rate was 69% or on par with a trained human oncologist and the researchers at the University of Adelaide behind it say an upgraded version is even better.

To train the machine to spot the right patterns that might predict lifespan, the scientist fed radiological chest scans belonging to 48 patients. The machine is based on a machine learning technique called deep learning which uses neural networks that mimic how the human brain works.

Lyle Palmer, an epidemiologist and one of the study’s authors, says his team embarked on this specific route because radiological images are a great resource. The more data you can feed into the machine’s algorithms, the more reliable its outputs, just like experience is important for making the right decisions in humans. Well, every year hundreds of thousands of radiological images are taken at every large hospital. Nowadays, most are well standardized and digitized which makes accessing them in a machine-friendly format is very easy. What’s more, many of these images contain bits of information that really no human can interpret — and not only the machine can, it can do so for thousands of instances at virtually the same time.

“In our recently published work, deep learning allowed us to explore the “hidden” features and patterns in CT images of the thorax that even expert humans are less able to decipher. We want to one day use this technology to predict the onset of chronic diseases such as diabetes, heart disease, and cancer before any symptoms are evident. As a proof-of-principle for our idea, we started off by looking at the much simpler outcome: 5-year mortality,” Palmer told ResearchGate. 

To compare their machine’s performance to a real human doctor, the researchers looked at clinical data and surveys that predict mortality published elsewhere. This is how they learn that their system had a similar accuracy as trained human doctors for gauging five-year lifespans, typically between 65 and 75 percent accurate. Adding more predictive information like age and sex will likely improve the result. In fact, since they published the paper, Palmer reports far better results.

“Our current models, which have built upon the foundational work described in our recent Scientific Reports paper, are capable of predicting 5-year mortality in a subset of patients being imaged with a thoracic CT scan in a hospital setting with around 80 percent accuracy. This is far better than a human doctor could do, and we are now thinking about how best to use this information in a clinical setting,” Palmer said.

“This sort of technology does not replicate what radiologists currently do, rather it provides an additional value to medical imaging studies. We envision that this approach could guide treatment decisions, potentiate preventative care, inform cohort selection for clinical research, and act as a more responsive biomarker for chronic diseases and aging,” he added.

 

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.