homehome Home chatchat Notifications


3D-printed Jell-O-like structure using peptide inks could be gamechanger for regenerative medicine

Bioprinting has come a long way, but there's still much ground to cover.

Tibi Puiu
February 10, 2023 @ 7:58 pm

share Share

Structures printed using the peptide-based 3D-printing ink developed by Rice’s Hartgerink lab. A dime is included for scale. Credit: Hartgerink lab/Rice University

Rice University scientists have developed a revolutionary solution for constructing complex structures for housing cells using a soft, Jell-O-like material. By using a self-assembling peptide ink, researchers in the lab of Rice’s Jeffrey Hartgerink have figured out how to 3D-print well-defined structures, which could be used to grow muscles and — perhaps one day — entire organs fit for transplant.

Advancing regenerative medicine with 3D printing

Adam Farsheed, a Rice bioengineering graduate student and lead author of the study, explains that the secret behind the 3D-printing process lies in multidomain peptides, which are made up of naturally occurring amino acids that are the same building blocks for proteins in the human body. The number of amino acids in a peptide can vary, but most peptides have less than 50 amino acids, whereas proteins are much longer than this figure.

These core peptides used as ink are designed to be hydrophobic (rejecting water) on one side and hydrophilic (attracting water) on the other, which allows them to stack onto one another like a ‘hydrophobic sandwich’ and form long fibers, which then form a hydrogel — a water-based material with a gelatinous texture that can be useful for a wide range of applications, ranging from tissue engineering and soft robotics to wastewater treatment.

“We used peptides as our base material in our 3D-printing inks,” says Farsheed. “Our material can reassemble after being deformed, similar to how toothpaste forms a nice fiber when pushed out of a tube.”

The structures printed with either positively charged or negatively charged multidomain peptides resulted in different outcomes when immature muscle cells were placed on the structures inside a petri dish. The cells remained balled up on the substrate with a negative charge, while on the positively charged material, the cells spread out and began to mature.

“It shows that we can control cell behavior using both structural and chemical complexity,” says Farsheed.

The end goal of the research is to print structures with cells and grow mature tissue in a petri dish. These tissues can then be transplanted to treat injuries, or used to learn about how an illness works and to test drug candidates. “We know that the multidomain peptides can safely be implanted in the body,” says Farsheed. “Our material is so soft, but I recognized that our multidomain peptides are an ideal ink candidate because of the way they self-assemble.”

This groundbreaking work, which appeared in Advanced Materials, represents a significant step forward in 3D printing using self-assembling peptides and has the potential to change the future of regenerative medicine and medical research.

Elsewhere, researchers at the National Eye Institute (NEI), part of the National Institutes of Health, recently used patient stem cells and 3D bioprinting to produce eye tissue. The aim is to use this tissue in the lab to study the mechanisms of blinding diseases, which can then be targeted with new treatments. At North Carolina State University, 3D-printed plant cells to better understand how plant cells communicate with each other, but also with the environment at large.

These developments demonstrate how far bioprinting has come along. However, we’re still ways away from bioprinting organs and other critical tissue for transplantation, which is the ultimate goal of such line of reserach.

share Share

The dark connection between mass shooters and their deadly copycats

High-profile mass shootings inspire copycats years later, fueled by shared traits and media exposure.

The Earth's Mantle is Far More Dynamic and Chaotic Than We Thought

The Earth's mantle isn't just a hot, dense layer of rock; it's a dynamic and diverse engine driving our planet's geology.

AI takes on whisky and it's doing just as well as the experts — if not better

Could AI outsniff human experts? Researchers have developed machine learning models that decode whisky aromas with remarkable accuracy,.

Ice Age Geographers? 20,000-Year-Old 3D Map Found in France

Engraved over 20 millennia ago, it intertwines ritual, symbolism, and water management in a stunning display of prehistoric ingenuity.

This surprising metal beats copper as an ultrathin wire for next-gen electronics

Thin, disordered films of niobium phosphide conduct electricity better than copper, researchers found in a new study.

Why firefighters in LA can't use salt water from the ocean to battle wildfires

Seawater may be plentiful, but its salty drawbacks make it a last resort for battling flames.

Scientists find spiders smell with their legs and the science behind it is fascinating

Spiders have always lived alongside humans, so it’s surprising how much we still don’t know about them. One long-standing mystery was related to how spiders detect smells. Now, our latest research has finally uncovered the secret. In a study published in Proceedings of the National Academy of Sciences, we demonstrated that male spiders use olfactory […]

Scientists uncover how your brain flushes out waste during sleep

Scientists uncover a pulsating system that flushes out brain waste during non-REM sleep.

Woman's nut allergy triggered after sex in bizarre first

She was allergic to Brazil nuts, but it wasn’t any she ate that sent her to the hospital.

Weekend warriors, rejoice: working out once in a while is also good for your brain

It seems that even exercise just on the weekend still has significant cognitive benefits.