homehome Home chatchat Notifications


First 3D mini lungs grow in the lab help end animal testing

Stem cells were coaxed to grow into 3D dimensional mini lungs, or organoids, for the first time. These survived for more than 100 days. These pioneering efforts will serve to deepen our understanding of how lungs grow, as well as prove very useful for testing new drugs' responses to human tissue. Hopefully, once human tissue grown in the lab becomes closer and close to the real deal (cultured hearts, lungs, kidneys etc.), animal testing might become a thing of the past.

Tibi Puiu
March 26, 2015 @ 3:32 pm

share Share

human-lung-organoid

Image: University of Michigan Health System

Stem cells were coaxed to grow into 3D dimensional mini lungs, or  organoids, for the first time. These survived for more than 100 days. These pioneering efforts will serve to deepen our understanding of how lungs grow, as well as prove very useful for testing new drugs’ responses to human tissue. Hopefully, once human tissue grown in the lab becomes closer and close to the real deal (cultured hearts, lungs, kidneys etc.), animal testing might become a thing of the past.

Previously, lung tissue was only grown in  flat (2D) cell systems, basically on thin layers of cell cultures. Some 3D structures had also been developed by scientists, but these were made onto scaffolds from donated organs which had their cells removed. Of course, the organoids grown at the University of Michigan Medical School aren’t what you or me know as lungs. Since these were grown in a dish, the cells lack vital components like blood vessels, which facilitate the gas exchange during breathing. Nevertheless, components like large airways known as bronchi and small lung sacs called alveoli were successfully grown. These 3-D structures are the closest we’ve come to a lab grown lung, according to the paper published in eLife.

To make the lung organoids, the team manipulated  signaling pathways that control the formation of organs.

  1. Stem cells were instructed to form a type of tissue called endoderm, found in early embryos and that gives rise to the lung, liver and several other internal organs.
  2. Scientists activated important development pathways that are known to make endoderm form three-dimensional tissue while inhibiting two other key development pathways at the same time.
  3. Acellular human lung matrix was seeded with spheroids and cultured for 40 days. Resulting matrices had abundant proximal airway-like structures (scale bar 10 μM) (credit: Briana R. Dye et al./eLife)

    Acellular human lung matrix was seeded with spheroids and cultured for 40 days. Resulting matrices had abundant proximal airway-like structures (scale bar 10 μM) (credit: Briana R. Dye et al./eLife)

    The endoderm became tissue that resembles the early lung found in embryos.

  4. This early lung-like tissue spontaneously formed three-dimensional spherical structures as it developed.
  5. To make these structures expand and develop into lung tissue, the team exposed the cells to additional proteins that are involved in lung development.
  6. The resulting lung organoids survived in the lab for more than 100 days.

“These mini lungs can mimic the responses of real tissues and will be a good model to study how organs form, change with disease, and how they might respond to new drugs,” says senior study author Jason R. Spence, Ph.D., assistant professor ofinternal medicine and cell and developmental biology at the University of Michigan Medical School.

“We expected different cells types to form, but their organization into structures resembling human airways was a very exciting result,” says lead study author Briana Dye, a graduate student in the U-M Department of Cell and Developmental Biology.

 

 

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.