homehome Home chatchat Notifications


The Conversational Secrets That Make AI ChatBots Feel So Human

When we interact with a chatbot, deeply ingrained habits make us behave as if it’s a person.

Celeste Rodriguez Louro
November 22, 2024 @ 1:34 pm

share Share

Illustration by Midjourney.

Earlier this year, a Hong Kong finance worker was tricked into paying US$25 million to scammers who had used deepfake technology to pretend to be the company’s chief financial officer in a video conference call. Thinking the images on screen were his colleagues, the financier authorised the multi-million dollar transfer to fraudsters posing as friends.

It’s a dramatic example, but the bamboozled office worker was far from alone in being fooled by generative AI. This technology, which relies heavily on large language models trained on vast amounts of data to learn and predict the patterns of language, has become increasingly widespread since the launch of ChatGPT in 2022.

How can we explain why some people who interact with generative AI chatbots are so readily convinced they are having a conversation with a kind of person? The answer may lie in the rules of conversation itself – and how they are deeply ingrained in the way we interact with the world.

Why the hype?

Generative AI systems based on language models produce text that a linguist would call “ungrounded”: it lacks the mutual understanding that is an essential component of conversations between people. However, when humans engage in an interaction we tend to assume that our partner has a mind.

We are wired to anthropomorphise the various non-humans we interact with. Before the recent leaps in generative AI, this was mainly animals.

Now it is machines. Before generative AI, our interactions with computers generally involved minimal linguistic back-and-forth. With generative AI, however, computer systems acknowledge us in a way that seems real. This “seeming real” is a huge part of the technology’s success.

So how does it work?

Language and thought

In a recent paper, American scientists Kyle Mahowald, Anna Ivanova and colleagues argue that we are conflating language and thought. Because generative AI systems can use language somewhat fluently, we believe they can think. (For the record, they cannot.)

The authors distinguish between formal linguistic competence (knowledge of rules and statistical patterns in language) and functional linguistic competence (how to use language in real-world situations).

It’s not enough to produce rule-governed utterances. They must also be used appropriately in context. In this example (crafted with the help of ChatGPT-4o when prompted to produce an example of an accurate but inappropriate conversational response), Alex offers a response that, while factually correct, fails to address their friend’s need for support.

Friend: I am freaking out about my presentation tomorrow.

Alex: Stress activates your body’s fight-or-flight response, increasing heart rate and cortisol levels.

Mahowald and colleagues say our belief in the intelligence of generative AI systems comes from their capacity for language. However, a crucial piece of the puzzle is what happens to humans when we interact with the technology.

The rules of conversation

The key to understanding the allure of generative AI chatbots for humans lies in the genre the bots perform: conversation. Conversation is governed by rules and routines.

Conversational routines vary across cultures, and different expectations are in place. In Western cultures, at least, linguists often regard conversation as proceeding according to four principles or “maxims” set out in 1975 by British philosopher of language Paul Grice.

The maxim of quality: be truthful; do not give information that is false or not supported by evidence.

The maxim of quantity: be as informative as is required; don’t give too much or too little information.

The maxim of relevance: only give information that is relevant to the topic under discussion.

The maxim of manner: be clear, brief, and orderly; avoid obscurity and ambiguity.

Finding relevance at all costs

Generative AI chatbots usually do well in terms of quantity (sometimes erring on the side of giving too much information), and they tend to be relevant and clear (a reason people use them to improve their writing).

However, they do often fail on the maxim of quality. They tend to hallucinate, giving answers which may appear authoritative but are in fact false.

The crux of generative AI’s success, however, lies in Grice’s claim that anyone engaged in meaningful communication will abide by these maxims and will assume that others are also following them.

For example, the reason lying works is that people interacting with a liar will assume the other person is telling the truth. People interacting with someone who offers an irrelevant comment will attempt to find relevance at all costs.

Grice’s cooperative principle holds that conversation is underpinned by our overarching will to understand one another.

The will to cooperate

The success of generative AI, then, depends in part on the human need to cooperate in conversation, and to be instinctively drawn to interaction. This way of interacting through conversation, learned in childhood, becomes habitual.

Grice argued that “it would take a good deal of effort to make a radical departure from the habit”.

Next time you engage with generative AI, then, do so with caution. Remember it’s only a language model. Don’t let your habitual need for conversational cooperation accept a machine as a fellow human.

Celeste Rodriguez Louro, Chair of Linguistics and Director of Language Lab, The University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

share Share

Some people are just wired to like music more, study shows

Most people enjoy music to some extent. But while some get goosebumps from their favorite song, others don’t really feel that much. A part of that is based on our culture. But according to one study, about half of it is written in our genes. In one of the largest twin studies on musical pleasure […]

This Tokyo Lab Built a Machine That Grows Real Chicken Meat

A lab in Tokyo just grew a piece of chicken that not only looks like the real thing — it tastes like it too.

This Test Could Catch Heart Trouble Years Before It Strikes For Under $7

A cheap blood test can detect silent heart damage before a heart attack or stroke

A 74-Year-Old Man Sent an AI Avatar to Argue His Court Case and Judges Were Not Amused

An AI-generated persona appeared before real judges. It backfired immediately.

Musk's DOGE Fires Federal Office That Regulates Tesla's Self-Driving Cars

Mass firings hit regulators overseeing self-driving cars. How convenient.

These Strange-Looking Urinals Could Finally Stop Pee From Splashing Back on You

The humble urinal gets a much needed high-tech update after 100 years.

An AI Called Dreamer Learned to Mine Diamonds in Minecraft — Without Being Taught

A self-improving algorithm masters a complex game task, hinting at a new era in AI.

UK Is Testing a "Murder Prediction" tool—and It's Seriously Alarming

Just in case your day wasn't dystopian enough.

The Number of Americans Who Don’t Want Kids At All Has Doubled Since 2002

The share of ‘childfree’ adults has doubled since 2002, new research shows.

Titanic 3D Scans Reveal Heartbreaking Clues About the Final Minutes Before It Sank

The ship was actually close to surviving the encounter with the iceberg.