homehome Home chatchat Notifications


A revolution against cancer is unfolding -- and we're just getting started

Can controlling cancer finally be on the menu?

Mihai Andrei
August 2, 2021 @ 1:23 pm

share Share

It’s hard to put just one label on Aaron Ciechanover. He was awarded the Nobel Prize in Chemistry for characterizing the method that cells use to degrade and recycle proteins using ubiquitin, but his background stems from biology, and he was also trained as a medical doctor and a surgeon. When it comes to understanding the intricacies around human health, few people on Earth can claim the broad view that Ciechanover has.

Which is why, when he says he’s excited about what’s to come in medicine, it’s hard not to share his excitement.

“The future of medicine is going to be revolutionary,” Ciechanover said at the 2021 Lindau Nobel meeting, which took place online this year due to the pandemic. The meetings bring together Nobel laureates and young scientists to foster scientific exchange.

Image credits: Christina Victoria Craft.

Precision medicine

Back in the days when Ciechanover was studying medicine, he recalls, things were very different.

“Let’s say, if a patient had a tumor, we were not interested in the molecular mechanism that underlies the tumor development, because we did not have the tools to study it,” he says.

The procedure was simplistic and straightforward. Doctors would look at the imaging facilities they had access to at the time (either X-ray, CT Scan, or MRI) and decide whether the tumor could be operated on. Surgery was generally the preferred procedure because the tumor mass could be extracted. If the tumor was too big or was touching essential organs, then doctors would try to decrease its size using chemotherapy or radiation, and then try surgery.

But these were (and still are) very harsh measures, with harsh side effects.

“They are like shooting a fly with a cannon. They are not discriminating between the healthy tissue and the sick tissue, they are very difficult to direct,” Ciechanover explains.

Then, at the turn of the century, a revolution started unfolding. In 2000, a landmark paper published in the journal Nature opened the floodgates of genetic discovery.

“I remember it very well, this exciting day when Nature magazine came out with the first human genome. The first human genome gave us the information, the library of what we are made of. This was really the very beginning, but the last 20 years have seen enormous progress. We are now able to diagnose the disease much better [..] and we are able to analyze tumors or any other disease at the molecular level.”

Here’s a sense of how much things have progressed. The price of whole human genome sequencing was around $2.7 billion in 2003. Today, it’s under $100. Advancements in technology and decrease in price has made genetic and molecular analyses more widely available, and it’s not about to stop.

“We are developing dedicated tools to stop the tumor or the disease at large, with a very gentle tool — directing a bullet direction at the underlying mechanism,” Ciechanover adds.

Even with conventional medicine, healthcare has benefited tremendously. Things like imaging, antibiotics, vaccines, operating procedures, and so on, have made a tremendous difference in how we treat patients. “But now we are into a much bigger revolution,” Ciechanover believes. He foresees a future where the very definition of medicine will change. Finally, we will start treating patients, not diseases, and patients will receive individualized treatments.

Controlling cancer by 2050

Tasuku Honjo is also optimistic. He believes that while cancer won’t be eradicated anytime soon, there’s a good chance we’ll be able to keep most cancers in check.

Honjo should know. He and his colleagues discovered a molecule called programmed cell death protein 1 (PD-1). They also showed that this molecule functions as a sort of braking system for acquired immunity — making sure that your immune system doesn’t go into overdrive and cause autoimmune disease. But too much PD-1, and the immune system would not do its job properly.

For instance, several tumors produce something similar to PD-1, which helps the tumors escape the immune system. But if PD-1 could be suppressed in cancer patients, then we could use people’s own immune systems to fight cancer. This is exactly what Honjo says can help keep cancers in check.

Honjo and colleagues found that blocking PD-1 in mice can cure tumors by reactivating acquired immunity in 2002. Then, in a landmark moment in 2014, the treatment of cancer in humans by PD-1 blockade was approved by regulatory bodies in Japan and the USA. Now, there are over 1,000 clinical trials happening in the world, and PD-1 treatments seem to be effective against a wide variety of cancers, with long-lasting positive effects.

Cutting and pasting (genes)

Another Nobel-winning discovery that could help our fight against cancer is CRISPR/Cas9.

“CRISPR is becoming a mainstream methodology used in many cancer biology studies because of the convenience of the technique,” says Jerry Li of NCI’s Division of Cancer Biology.

CRISPR is a relatively simple but very powerful and accurate way to edit genes. It was inspired by nature, from a defense mechanism some bacteria use to protect themselves against viral invasions. The bacterium captures snippets of any virus intruder’s DNA and stores it as segments called CRISPRs. If the same virus returns and tries to attack again, the bacterium searches its DNA library and releases an enzyme called Cas to slice up the invader’s DNA.

“Gene editing is not new,” Professor Emmanuelle Charpentier, one of the pioneers behind CRISPR  explained at the Lindau Nobel meeting. But thanks to the work of Charpentier and Jennifer Doudna, who were awarded the 2020 Nobel Prize, we have access to unprecedented tools.

The first CRISPR cancer therapy was launched in 2019. The goal of the study is to edit patients’ own immune cells to better detect and kill cancer. The treatment is safe, and early results are encouraging — but CRISPR is still just getting warmed up.

“This [trial] was really a proof-of-principle, feasibility, and safety thing that now opens up the whole world of CRISPR editing and other techniques of [gene] editing to hopefully make the next generation of therapies,” said Edward Stadtmauer, M.D., of the University of Pennsylvania, who is involved with the research. 

Can we keep cancer in check?

We’ve come a long way in our fight against cancer in the past half-century, but despite improving diagnosis and treatments, there’s still more work to be done if we want to keep cancer in check. But the tools we need to do so are now coming in.

With approaches like CRISPR or PD-1, researchers can develop customized, efficient treatments with few side effects. Thanks to the likes of Honjo, Charpentier, and Ciechanover, we are witnessing a new revolution of medicine, and it’s hard not to share their enthusiasm for what’s to come.

It’s still early days and there are plenty of hurdles to be overcome, but the science is progressing in leaps and bounds. It may not be today or tomorrow, but we’re gathering the weapons to fight cancer — and it’s shaping up to be a big arsenal.

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

The Math Behind Why Mexico’s Cartel War is a Never-Ending Nightmare

Cartels are Mexico's fifth largest employer. They are recruiting faster than the government can arrest them.

A Factory for Cyborg Insects? Researchers Unveil Mass Production of Robo-Roaches

The new system can turn cockroaches into cyborgs in under 70 seconds.

Origami-Inspired Heart Valve May Revolutionize Treatment for Toddlers

A team of researchers at UC Irvine has developed an origami-inspired heart valve that grows with toddlers.

AI thought X-rays are connected to eating refried beans or drinking beer

Instead of finding true medical insights, these algorithms sometimes rely on irrelevant factors — leading to misleading results.

AI is scheming to stay online — and then lying to humans

An alarming third party report almost looks like a prequel to Terminator.

Scientists Built a Radioactive Diamond Battery That Could Last Longer Than Human Civilization

A tiny diamond battery could power devices for thousands of years.

Is AI the New Dot-Com Bubble? The Year 2025 Has 1999 Vibes All Over It

AI technology has promised us many advances and 2025 looms ahead of us. Will the outputs match the promises?

New 3D Bio-printer Injects Living Cells Directly Onto Injuries To Heal Bones and Cartilage

In recent years, 3D printing has evolved dramatically. Once limited to materials like plastic or resin, it now extends to human cells, enabling the creation of living tissues. However, bioprinting remains a slow and limited process—until now. This latest innovation promises to change that. A team of researchers has introduced a new, cutting-edge bioprinting system […]