homehome Home chatchat Notifications


Solar parks could act as life rafts for bumblebees and other pollinators

Maintaining these sites as meadows instead of grassy areas can work wonders for pollinators.

Alexandru Micu
December 13, 2021 @ 11:50 pm

share Share

Bees around the world are struggling under habitat loss; solar parks could provide a safe haven, according to new research.

Image credits Josef Pichler.

Researchers at Lancaster University have used computer modeling to investigate how different management scenarios of solar parks could help provide a home for ground-nesting bumblebees. The results are quite encouraging, the team explains, showcasing that solar parks can help maintain significant populations of bumblebees both inside their bounds and in their surroundings.

Although the research focused on bumblebees, the authors are confident that the findings translate over to other pollinators as well.

Solar neighborhoods

“Renewable energy development is projected to grow and solar is predicted to lead the way. Solar parks have a high land take per unit of energy produced and this will lead to significant land use change in the future,” says Hollie Blaydes, PhD student and Associate Lecturer at the Lancaster Environment Centre, lead author of the paper, in an email for ZME Science.

“Understanding of the environmental impacts of this land use change is only just emerging, but there is scope to incorporate environmental benefits into the energy transition. One potential benefit is the creation of pollinator habitat within solar parks.”

For the study, the team used computer models that simulated bumblebee foraging behavior across the UK’s solar parks. From there, they examined how different management strategies (each offering varying degrees of resources for the insects) would influence their numbers and activity. They then used statistical analyses to investigate differences in bumblebee density and nest density across the different solar parks in the model.

Managing solar parks as meadows, they explain, would make the most resources available to bumblebees, and could support populations four times as large as solar parks as solar parks with only grassland and no flowers. The changes required to transition solar parks from grass to meadows are quite simple and could provide significant benefits for pollinators across the country — in addition to generating clean energy.

Larger, more elongated, and more resource-rich solar parks (i.e. with more flowers) could help increase bumblebee density up to 1 km outside of their bounds, the team found. This means that well-managed solar parks could act as hotspots, delivering pollinator services to crops in nearby agricultural lands.

“Pollinator habitat has already been established within some solar parks, but there is little evidence of how effective this is and how pollinators respond,” Blaydes added for ZME Science. “This knowledge gap inspired us to perform this research and by doing so we have provided some of the first evidence to suggest that creating suitable habitat on solar parks could be an effective way to support bumblebee populations.”

Solar parks in the UK are often located within areas where intensive agriculture is practiced. This makes them ideally suited as bumblebee refuges, the team explains. Further increasing their potential in this regard is that the total land area used as solar parks in the UK is increasing steadily as more and more of the country’s energy demands are covered by solar panels.

The UK currently has around 14,000 hectares, which is projected to increase to 90,300 hectares as part of the UK’s plan to meet net zero-emission targets. All that space can be put to good use in the service of pollinators.

However, the path forward is not really clear-cut. Solar park management is often outsourced on contracts that typically last around two years at a time. This can make it hard to plan management strategies for the long term, as each new company will need to adapt to and maintain the habits they inherit.

“The creation of floral-rich habitat on solar parks is likely to benefit a wide range of pollinators. In this study, we focused only on ground-nesting bumblebees given they are a key pollinator of agricultural crops in the UK. Other pollinator groups rely on similar resources to ground-nesting bumblebees, but differences in flight ranges and foraging patterns means that a slightly different modelling approach would be needed to test solar park management and design options for these groups,” Blaydes adds for ZME Science.

Besides offering huge economic benefits for farmers and society as a whole by harboring bumblebees which would handle the pollination of crops. Pollinators the world over are struggling, and spaces such as solar parks could provide veritable lifeboats for these species, who are under pressure from habitat destruction, pesticides, pollution, and dwindling food supplies.

“Solar parks could act as safe havens for bumblebees and other pollinators if managed appropriately. Our study found that solar parks providing the most foraging and nesting resources were most effective at boosting bumblebee numbers both inside the solar park and in the surroundings,” Blaydes adds for ZME Science. “This suggests that resource-rich solar parks could be used as a conservation tool to help address drivers of bumblebee decline and that there could be implications for pollination to crops and wild plants in the surrounding land.”

Hollie Blaydes will present the work at Ecology Across Borders’ Annual Meeting, 2021. This study is unpublished and is currently under review. Original story here.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.